«Все что существует в реальном мире можно создать в виртуальном, используя правильное сочетание программ и таланта художника».


На сегодняшний день ни один современный фильм и компьютерная игра не обходятся без трехмерной графики. Профессия 3D-художника востребована как никогда. Чтобы начать создавать трехмерную графику, нужно иметь представление об основных инструментах (3D редакторах) и этапах производства (pipeline) 3D моделей.

Особенности процесса создания фильмов


Создание компьютерной графики в фильмах - колоссальная работа, над которой трудятся сотни профессионалов. От сценаристов и режиссеров до целой армии 3D-художников: они занимаются моделированием, текстурированием, анимацией, риггингом и визуализацией персонажей и виртуального мира.

Основные факторы в процессе создания графики:

  • сроки работ;
  • уровень сложности и качества моделей;
  • бюджет проекта.

Особенности процесса создания компьютерных игр


В отличие от фильма, игра - это интерактивное взаимодействие человека и виртуального мира. Поэтому главные факторы при создании игры:

  • интерактивность;
  • бесперебойное функционирование;
  • и только затем визуальный аспект.

Моделер ограничен возможностями игрового движка и консоли. Часто задано строгое количество полигонов для каждого отдельного элемента.

Основные этапы создания и визуализации 3 D моделей в кино и game -индустриях

  1. Моделирование - создание трехмерных объектов.
  2. Текстурирование - наложение текстур и материалов на 3D-модели.
  3. Риггинг (от англ. Rig - оснастка) - создание виртуального «скелета», набора «костей»/«суставов» для последующей анимации персонажа.
  4. Анимация - «оживление», анимирование трехмерного персонажа.
  5. Рендеринг (3 D визуализация) - визуализация созданной графики и запись.
  6. Композитинг - объединение отдельных элементов в финальную сцену. К примеру, интегрирование 3D сцен в съемочный материал, цветокоррекция и добавление эффектов.

Моделирование


Способов моделирования множество, рассказать обо всех в одной статье нереально. Мы затронем лишь самые популярные методы.

Процесс моделирования для фильмов и игр в целом схож, однако существуют некоторые различия, а именно:

  1. Способ моделирования.

В моделях для фильмов можно использовать кривые поверхности (NURBS-моделирование) и полигоны (полигональное моделирование). В играх обычно используют только полигональные модели, их проще всего визуализировать.

  1. Количество полигонов у модели.

Чем больше полигонов у объекта, тем выше детализация и качество. В связи с этим выделяют высокополигональные (high poly) и низкополигональные (low poly) модели. Для фильмов обычно создают высокополигональные модели, рендеринг которых, проходит по несколько часов, а то и дней. В играх же используются низкополигональные модели, визуализация происходит прямо по ходу игры. Часто в компьютерных играх встречается LOD-технология (Level of Detail - «уровень детализации»). Она состоит в упрощении 3D-моделей путем подмены их на более примитивные, когда виртуальная камера (игрок) удаляется от них. Это разгружает систему, и она работает над полной обработкой только объектов в пределах видимости.

Хотя релизы некоторых новых игр и демонстрируют качественное улучшение графики, у моделера стоит сложная задача: создать ощущения высокого качества при ограниченном «полигонаже».

Существует много программ для моделирования. Бесспорным лидером является Autodesk Maya , далее идут Autodesk 3 Ds Max и Cinema 4 D . Также можно выделить Modo и Blender . Преимущество последнего - бесплатность.

Если вы хотите заняться цифровым скульптингом, выбирайте такие редакторы, как ZBrush , Mudbox , 3 D Coat .

Текстурирование


Текстурирование - не просто подбор цвета и материалов для модели, это целое искусство, которым в кино занимается отдельный специалист - художник по текстурам . Перед его работой моделер создает текстурную развертку (UV-развертка) - двумерное изображение, содержащее поверхность модели. UV-развертки нужны для того, чтобы текстура идеально «легла» на модель и не было никаких ошибок.

Далее рисуются текстуры и привязываются к модели. Создается целый набор текстур: цвет, карта неровностей (bump), карта нормалей (normal map - создает видимость рельефа), карта рельефа (displacement - создает реальный рельеф), карта бликов (specular), карта прозрачности (alpha) и многие другие. Так создается готовый визуальный образ модели или персонажа: от одежды и волос до морщинок.

Часто в игровой индустрии моделер ответственен и за моделирование, и текстурирование. В кино художник по текстурам - часто отдельная должность.

Создавать текстурные развертки и текстуры можно в тех же программах, что и модели. Но часто удобнее делать это в UVLayout .

Риггинг


Следующий этап риггинг - создание «скелета», костей модели. Занимаются этим в кино и game-индустрии художники по «оснастке» модели, «сетаперы» (от англ. Setup artist). Еще их называют skinning, rigging artist. Сетаперы создают кости и средства (контроллеры) для управления этими костями, с помощью которых аниматоры могут «оживить» модель.

В кино обычно создается множество сложных контроллеров для аниматоров. Например, для лицевой анимации (facial control rig) и мимики модели. В играх можно обойтись и без них, если персонаж не разговаривает в игре.

Для риггинга модели подойдут те же 3D-редакторы, о которых сказано выше. Большинство этих программ - комплексные пакеты для создания трехмерной графики, в том числе и для оснастки модели.

Анимация


Чтобы «оживить» трехмерную модель за работу берутся аниматоры. Главная задача аниматора - сделать движения модели максимально реалистичными. Особенно это актуально в фильмах, когда в кадре трехмерному персонажу нужно взаимодействовать с реальными актерами.

Простейшим методом анимации персонажей является Анимация по ключевым кадрам (Keyframes ) . Аниматор указывает положение персонажа в начальном и конечном кадрах движения, а положение в промежуточных кадрах вычисляется программой. Это простой в реализации способ, но достаточно трудоемкий для создания сложных движений и требует большого умения аниматора для получения реалистичности персонажа.

Существует еще процедурная анимация , при которой используется специальная программа для управления персонажем.

Напомним и про технологию Motion Capture (система захвата движений). Она подразумевает наложение движений реальных актеров на трехмерных персонажей. Эта технология максимально упрощает анимацию, позволяя использовать уже готовые движения актеров.

Негласным лидером в создании трехмерной анимации является Autodesk Maya . Однако, она не так легка в освоении. Помимо Maya отличные инструменты для анимации - 3 Ds Max и Cinema 4 D .

Рендеринг


Завершающий этап - итоговая визуализация (rendering) полученных сцен.

Существует два вида рендеринга - рендеринг в реальном времени и рендеринг не в реальном времени или пре-рендеринг.

В компьютерных играх используется рендеринг в реальном времени. Реакции на действия игрока происходят моментально. Свет, цвет и тени формируются с помощью ранее просчитанных карт и текстур, а объекты перспективно проецируются на экран. Чтобы качество графики при этом не пострадало, в играх часто используются 3D ускорители. Главный критерий в игре - скорость выполнения просчета.

В кино обычно используют пре-рендеринг , когда скорость просчета - не главный фактор, а на первом плане высокое качество изображений. А именно, фотореалистическое качество с физически корректным наложением света и тени. Рендер каждого отдельного кадра может длиться по 20, а то и 100 часов. Фотореалистичный рендер - ресурсоемкая задача, справиться с которой помогут рендер фермы. Они помогают в разы сократить время просчета.

Среди методов рендеринга можно выделить:

  • растеризацию с методом сканирования строк (scanline, rasterization);
  • трассировку лучей (raytracing);
  • метод излучательности (radiosity).

Очень часто методы raytracing и radiosity комбинируются для достижения впечатляющих фотореалистичных результатов.

Стандартные программы трехмерного моделирования включают и функцию рендеринга. Существуют и отдельные рендер-движки. Одни из самых мощных визуализаторов на сегодняшний день - Mental Ray , VRay , Renderman .

Композитинг


Композитинг является важным завершающим этапом постпродакшена.

И это не просто работа над цветом и слоями: композер объединяет все части в единое целое, интегрирует в съемочный материал трехмерных персонажей и другие 3D элементы, устраняет недочеты и убирает лишнее, работает над различными эффектами. Одним словом, создает одну реалистичную сцену. Композер является ответственным за финальный продукт - фильм, игру.

Профессиональные программы для композитинга - Nuke , Adobe After Effects , Eyeon Fusion .

В заключение хочется сказать, что хорошими художниками не становятся в одночасье: нужны многие месяцы и даже годы практики. Выбрав свой путь, старайтесь не расстраиваться, если на первых порах ваши работы далеки от шедевра. Помните: зачастую все, что вы видите в фильмах и играх годами создавалось сотнями профессионалов своего дела. Практикуйтесь и учитесь у профессионалов, и все у вас получится!

  • Recovery Mode

Все мы слышали о 3D графике (далее просто 3D, не путать со способом отображения - голограммами, 3D-мониторами и т.п.), многие прекрасно знают, что такое 3D и с чем его едят. Но, все же, есть и те, кто смутно себе представляет, что кроется под этой короткой аббревиатурой. Статья рассчитана на тех, кто не имеет представления о компьютерной графике. Также будет немного экскурса в историю компьютерной графики (в следующих планируемых частях).
Почему именно 3D? Как нетрудно догадаться, речь идет о 3 Dimension, или о трех измерениях. И не обязательно при этом, чтобы и отображение было в 3D. Речь идет о способе построения картинки.

Часть 1. Собственно, моделирование
Традиционно рисуют в 2D (по осям X и Y) - на бумаге, холсте, дереве и т.п. При этом отображают какую-то одну из сторон предмета. Картинка сама по себе плоская. Но если мы хотим получить представление обо всех сторонах предмета, то необходимо нарисовать несколько рисунков. Так поступают в традиционной рисованной анимации. Но, вместе с тем, существует, (кстати, в СССР была довольно хорошо развита) т.н. кукольная анимация. Один раз изготовленную куклу снимают в необходимых позах и ракурсах, получая серию «плоских картинок». 3D (к X и Y добавляется координата глубины Z) визуализация - это те же «куклы», только существующие в цифровом виде. Другими словами, в специальных программах (Blender, 3ds Max, Maya, Cinema 4D и т.п.) создается объемное изображение, например авто.


Преимущество данного метода в том, что в распоряжении, скажем, аниматора есть объемная модель, необходимо лишь поместить ее должным образом в кадр, анимировать (задать траекторию передвижения или рассчитать с помощью симулятора) при необходимости, а уж отображение авто в финальной картинке ложится на специальную программу называемую визуализатором (render). Еще одно преимущество в том, что модель достаточно нарисовать один раз, а потом использовать в других проектах (скопировав), изменять, деформировать и т.п. по своему усмотрению. Для обычного 2D рисунка, в общем случае, такое невозможно. Третье преимущество - можно создавать практически бесконечно детализированные модели, например смоделировать даже винтики на часах и т.п. На общем плане этот винтик может быть и неразличим, но стоит нам приблизить камеру, программа-визуализатор сама рассчитает, что видно в кадре, а что - нет.

Существует несколько способов моделирования, но самым популярным является полигональное моделирование. Нередко можно увидеть в роликах о 3D или фантастических фильмах как тот или иной объект представляется в виде т.н. сетки. (см. рисунок выше) Это и есть пример полигонального моделирования. Суть его в том, что поверхности представляются в виде простых геометрических двумерных примитивов. В компьютерных играх это треугольники, для других целей обычно используют четырехугольники и фигуры с большим кол-вом углов. Эти примитивы, из которых состоит модель, называют полигонами . Но при создании 3D объекта стараются обойтись, как правило, четырехугольниками. При необходимости четырехугольники (полигоны) без проблем превращаются в треугольники при экспорте в игровой движок, а при необходимости сглаживания или тесселяции модель из четырехугольников получается, как правило, без артефактов.
Что такое тесселяция? Если какой-то объект представляется в виде полигонов (особенно органические объекты, например человек), то понятно, что чем меньше размер полигонов, чем их больше, тем более близкой может быть модель к оригиналу. На этом основан метод тесселяции: сначала изготавливают грубую болванку из небольшого кол-ва полигонов, затем применяют операцию тесселяции, при этом каждый полигон делится на 4 части. Так вот, если полигон четырехугольный (а еще лучше, близок к квадрату) то алгоритмы тесселяции дают более качественный и предсказуемый результат. Также операция сглаживания, а это та же тесселяция, только с изменением углов на более тупые, при близких к квадрату полигонах, позволяет получить хороший результат.



Как было сказано выше, чем больше полигонов, тем более модель может (может, потому, что модель должна быть еще похожа на оригинал, а это вопрос мастерства моделера, а не полигонов) походить на оригинал. Но у большого кол-ва полигонов есть обратная сторона: понижение производительности. Чем больше полигонов, тем больше точек по которым они строятся, тем больше данных приходится обрабатывать процессору. Поэтому 3D графика - это всегда компромисс между детализацией модели и производительностью. В связи с этим даже возникли термины: hight poly и low poly, соответственно высоко полигональная модель и низко полигональная модель. В играх применяются низко полигональные модели, так как в них выполняется визуализация в реальном времени. Кстати, модели в играх представлены треугольниками для повышения производительности: графические процессоры умеют на аппаратном уровне быстро обрабатывать сотни миллионов треугольников за секунду.

Как правило, полигональное моделирование относится к пустотелому моделированию, где объект имеет только объем, но внутри пустой. Это означает, что если мы смоделируем куб, а потом удалим одну из стенок, то увидим внутри пустоту. Также имеются программы для твердотельного моделирования, где тот же самый куб представлен в виде монолитного объекта. В таких программах (к примеру, Autodesk Inventor) применяются математические модели отличные от тех, что в полигональном моделировании. Алгоритмы твердотельного моделирования лучше подходят для моделирования механизмов при разработке техники. Программы вроде Autodesk Inventor имеют средства для моделирования с учетом особенностей технологического процесса, как то фаски, сверление отверстий, проставление размеров, допусков и т.п. Получаемые модели можно сразу отправить на подходящий станок для получения изделия в металле или другом материале.
Также существуют так называемые программы 3D лепки (ZBrush, Autodesk Mudbox) в которых моделирование сводится (грубо говоря) к созданию углублений или выпуклостей. Такая техника похожа на то, как скульпторы лепят из глины - убирая ненужное и добавляя необходимое. С помощью таких программ можно добиться реалистичного рельефа поверхности, например морщин на коже или складок ткани. В настоящее время высокополигональные (а для лепки модель должна обладать солидным кол-вом полигонов) реалистичные модели людей и вообще животного мира выполняются, в большинстве своем, с применение программы лепки. Распространена практика когда заготовка модели создается с помощью полигонального моделирования, а затем в программе лепки тесселируется и добавляются мелкие детали.

Но вот у нас есть готовая модель, скажем, танка. Но на танк, собственно, она не совсем похожа. В чем же тут дело? На данном этапе у нас всего лишь математическая модель содержащая данные только о геометрической форме. Но у реального объекта кроме формы есть еще и цвет, плотность, отражающая способность, и, возможно, запах. Последнее пока в 3D графике не применяется, а вот все остальное можно смоделировать. Придание модели нужного цвета и блеска называют текстурированием, от слова текстура.



В общем случае текстура - это двумерный рисунок который накладывается на 3D модель. Текстура может быть как процедурной - сгенерированной при помощи алгоритма, так и нарисованная в графическом редакторе, или фотографией реального объекта. С помощью текстуры задается рисунок и цвет модели, но реальная поверхность обладает и другими параметрами: отражающей способностью, преломлением, рельефом, позрачностью и т.п. Все эти параметры задаются в свойствах материала. Т.е. материал с точки зрения 3D графики - это некая математическая модель описывающая параметры поверхности. Например, для воды обязательно необходимо указать прозрачность и преломляющую, отражающую способности.
Перед «нанесением» материала на 3D модель необходимо создать ее развертку, т.е. представить все (несколько, одну) поверхности в виде проекции на плоскость. Это необходимо для того, чтобы затем двумерная текстура правильно «лягла» на модель.
Таким образом изготовление 3D модели в общем случае состоит из следующих стадий:
1. Получение изображений референса (т.е. того, с чего будет моделироваться) или самого референса. Или отрисовка экскиза.
2. Моделирование геометрии на основе референса.
3. Создание развертки.
4. Отрисовка текстур или получение их другим способом в виде файлов.
5. Настройка параметров материала (текстуры, преломление, отражение, прозрачность).
Теперь 3D модель готова для визуализации - получении картинки.
Первый и четвертый пункт могут быть быть опущены если модель простая, но, как правило, хороших результатов без всех 5 шагов не добиться.
Подытожим.
Между обычным рисунком, скажем, на бумаге, и построением 3D изображения есть существенные различия в самом процессе. Двумерный рисунок, как правило, создается в два этапа: эскиз и раскрашивание. В 3D графике после изготовления модели ее необходимо поместить в сцену к другим объектам (или в так называемую студию), добавить освещение, камеру и лишь затем можно надеяться получить финальную картинку. Изображение в 3Dграфике просчитывается на основе физической модели, как правило, это модель распространения луча света с учетом отражения, преломления, рассеивания и т.п. Рисуя красками мы сами отрисовываем тени, блики и т.д., а в трехмерной графике мы подготавливаем сцену с учетом освещения, материалов, геометрии, свойств камеры, программа рассчитывает итоговую картинку сама.

Вот, на сегодня пока и все. Комментарии, а особенно вопросы и замечания по существу приветствуются.

P.S. В следующих частях (если Хабрабществу будет интересно) мы более подробно поговорим о трехмерном моделировании для игр, будет затронута визуализация, моделирование динамических сред, таких как вода, разрушение объекта и затронем динамическое взаимодействие между 3D объектами, историю 3D графики.

3D графика и ее применение

3D графика – это процесс создания объемной модели при помощи специальных компьютерных программ. Этот вид компьютерной графики вобрал в себя очень много из векторной, а так же и из растровой компьютерной графики. На основе чертежей, рисунков, подробных описаний или любой другой графический или текстовой информации, 3D дизайнер создает объемное изображение. В специальной программе модель можно посмотреть со всех сторон (сверху, снизу, сбоку), встроить на любую плоскость и в любое окружение. Трёхмерная компьютерная графика, как и векторная, является объектно-ориентированной, что позволяет изменять как все элементы трёхмерной сцены, так и каждый объект в отдельности. Этот вид компьютерной графики обладает большими возможностями для поддержки технического черчения. С помощью графических редакторов трёхмерной компьютерной графики, можно выполнять наглядные изображения деталей и изделий машиностроения, а также выполнять макетирование зданий и архитектурных объектов, изучаемых в соответствующем разделе архитектурно-строительного черчения. Наряду с этим может быть осуществлена графическая поддержка таких разделов начертательной геометрии как, перспектива, аксонометрические и ортогональные проекции, т.к. принципы построения изображений в трёхмерной компьютерной графике частично заимствованы из них.

Трехмерная графика может быть любой сложности. Вы можете создать простую трехмерную модель, с низкой детализацией и упрощенной формы. Или же это может быть более сложная модель, в которой присутствует проработка самых мелких деталей, фактуры, использованы профессиональные приемы (тени, отражения, преломление света и так далее). Конечно, это всерьез влияет на стоимость готовой трехмерной модели, однако позволяет расширить применение трехмерной модели.

Где применяется трехмерная графика

Трехмерное моделирование (3d графика) сегодня применяется в очень многих сферах. Конечно, в первую очередь, это строительство. Это может быть модель будущего дома, как частного, так и многоквартирного или же офисного здания, да и вообще любого промышленного объекта. Кроме того, визуализация активно применяется в дизайн-проектах интерьеров.

3D модели очень популярны в сайтостроительстве. Для создания особенного эффекта некоторые создатели сайтов добавляют в дизайн не просто графические элементы, а трехмерные модели, иногда даже и анимированные. Программы и технологии трехмерного моделирования широко применяются и в производстве, например, в производстве корпусной мебели, и в строительстве, например, для создания фотореалистичного дизайн-проекта будущего помещения. Многие конструкторы уже давно перешли от использования линейки и карандаша к современным трехмерным компьютерным программам. Постепенно новые технологии осваивают и другие компании, прежде всего, производственные и торговые.

Конечно, в основном трехмерные модели используются в демонстрационных целях. Они незаменимы для презентаций, выставок, а также используются в работе с клиентами, когда необходимо наглядно показать, каким будет итоговый результат. Кроме того, методы трехмерного моделирования нужны там, где нужно показать в объеме уже готовые объекты или те объекты, которые существовали когда-то давно. Трехмерное моделирование это не только будущее, но и прошлое и настоящее.

Преимущества трехмерного моделирования

Преимуществ у трехмерного моделирования перед другими способами визуализации довольно много. Трехмерное моделирование дает очень точную модель, максимально приближенную к реальности. Современные программы помогают достичь высокой детализации. При этом значительно увеличивается наглядность проекта. Выразить трехмерный объект в двухмерной плоскости не просто, тогда как 3D визуализации дает возможность тщательно проработать и что самое главное, просмотреть все детали. Это более естественный способ визуализации.

В трехмерную модель очень легко вносить практически любые изменения. Вы можете изменять проект, убирать одни детали и добавлять новые. Ваша фантазия практически ни чем не ограничена, и вы сможете быстро выбрать именно тот вариант, который подойдет вам наилучшим образом.

Однако трехмерное моделирование удобно не только для клиента. Профессиональные программы дают множество преимуществ и изготовителю. Из трехмерной модели легко можно выделить чертеж каких-либо компонентов или конструкции целиком. Несмотря на то, что создание трехмерной модели довольно трудозатратный процесс, работать с ним в дальнейшем гораздо проще и удобнее чем с традиционными чертежами. В результате значительно сокращаются временные затраты на проектирование, снижаются издержки.

Специальные программы дают возможность интеграции с любым другим профессиональным программным обеспечением, например, с приложениями для инженерных расчетов, программами для станков или бухгалтерскими программами. Внедрение подобных решений на производстве дает существенную экономию ресурсов, значительно расширяет возможности предприятия, упрощает работу и повышает ее качество.

Программы для трехмерного моделирования

Существует довольно большое количество самых разных программ для 3D моделирования. Так, одной из популярных программ, которые специально разработаны для создания трехмерной графики и дизайна интерьеров, является программа 3D Studio MAX. Она позволяет реалистично визуализировать объекты самой разной сложности. Кроме того, «3D Studio MAX» дает возможность компоновать их, задавать траектории перемещений и в конечном итоге даже создавать полноценное видео с участием трехмерных моделей. Хотя такая работа, конечно же, требует у специалиста серьезных навыков, а также больших компьютерных ресурсов, в первую очередь объемов памяти и быстродействие процессора.

Редактор Maya назван в честь санскритского слова, которое означает иллюзия. Maya была разработана Alias Systems. В октябре 2005 года компания Alias влилась в Autodesk. Maya чаще используется для создания анимации и трехмерных эффектов в фильмах.

«Все что существует в реальном мире можно создать в виртуальном, используя правильное сочетание программ и таланта художника».


На сегодняшний день ни один современный фильм и компьютерная игра не обходятся без трехмерной графики. Профессия 3D-художника востребована как никогда. Чтобы начать создавать трехмерную графику, нужно иметь представление об основных инструментах (3D редакторах) и этапах производства (pipeline) 3D моделей.

Особенности процесса создания фильмов


Создание компьютерной графики в фильмах - колоссальная работа, над которой трудятся сотни профессионалов. От сценаристов и режиссеров до целой армии 3D-художников: они занимаются моделированием, текстурированием, анимацией, риггингом и визуализацией персонажей и виртуального мира.

Основные факторы в процессе создания графики:

  • сроки работ;
  • уровень сложности и качества моделей;
  • бюджет проекта.

Особенности процесса создания компьютерных игр


В отличие от фильма, игра - это интерактивное взаимодействие человека и виртуального мира. Поэтому главные факторы при создании игры:

  • интерактивность;
  • бесперебойное функционирование;
  • и только затем визуальный аспект.

Моделер ограничен возможностями игрового движка и консоли. Часто задано строгое количество полигонов для каждого отдельного элемента.

Основные этапы создания и визуализации 3 D моделей в кино и game -индустриях

  1. Моделирование - создание трехмерных объектов.
  2. Текстурирование - наложение текстур и материалов на 3D-модели.
  3. Риггинг (от англ. Rig - оснастка) - создание виртуального «скелета», набора «костей»/«суставов» для последующей анимации персонажа.
  4. Анимация - «оживление», анимирование трехмерного персонажа.
  5. Рендеринг (3 D визуализация) - визуализация созданной графики и запись.
  6. Композитинг - объединение отдельных элементов в финальную сцену. К примеру, интегрирование 3D сцен в съемочный материал, цветокоррекция и добавление эффектов.

Моделирование


Способов моделирования множество, рассказать обо всех в одной статье нереально. Мы затронем лишь самые популярные методы.

Процесс моделирования для фильмов и игр в целом схож, однако существуют некоторые различия, а именно:

  1. Способ моделирования.

В моделях для фильмов можно использовать кривые поверхности (NURBS-моделирование) и полигоны (полигональное моделирование). В играх обычно используют только полигональные модели, их проще всего визуализировать.

  1. Количество полигонов у модели.

Чем больше полигонов у объекта, тем выше детализация и качество. В связи с этим выделяют высокополигональные (high poly) и низкополигональные (low poly) модели. Для фильмов обычно создают высокополигональные модели, рендеринг которых, проходит по несколько часов, а то и дней. В играх же используются низкополигональные модели, визуализация происходит прямо по ходу игры. Часто в компьютерных играх встречается LOD-технология (Level of Detail - «уровень детализации»). Она состоит в упрощении 3D-моделей путем подмены их на более примитивные, когда виртуальная камера (игрок) удаляется от них. Это разгружает систему, и она работает над полной обработкой только объектов в пределах видимости.

Хотя релизы некоторых новых игр и демонстрируют качественное улучшение графики, у моделера стоит сложная задача: создать ощущения высокого качества при ограниченном «полигонаже».

Существует много программ для моделирования. Бесспорным лидером является Autodesk Maya , далее идут Autodesk 3 Ds Max и Cinema 4 D . Также можно выделить Modo и Blender . Преимущество последнего - бесплатность.

Если вы хотите заняться цифровым скульптингом, выбирайте такие редакторы, как ZBrush , Mudbox , 3 D Coat .

Текстурирование


Текстурирование - не просто подбор цвета и материалов для модели, это целое искусство, которым в кино занимается отдельный специалист - художник по текстурам . Перед его работой моделер создает текстурную развертку (UV-развертка) - двумерное изображение, содержащее поверхность модели. UV-развертки нужны для того, чтобы текстура идеально «легла» на модель и не было никаких ошибок.

Далее рисуются текстуры и привязываются к модели. Создается целый набор текстур: цвет, карта неровностей (bump), карта нормалей (normal map - создает видимость рельефа), карта рельефа (displacement - создает реальный рельеф), карта бликов (specular), карта прозрачности (alpha) и многие другие. Так создается готовый визуальный образ модели или персонажа: от одежды и волос до морщинок.

Часто в игровой индустрии моделер ответственен и за моделирование, и текстурирование. В кино художник по текстурам - часто отдельная должность.

Создавать текстурные развертки и текстуры можно в тех же программах, что и модели. Но часто удобнее делать это в UVLayout .

Риггинг


Следующий этап риггинг - создание «скелета», костей модели. Занимаются этим в кино и game-индустрии художники по «оснастке» модели, «сетаперы» (от англ. Setup artist). Еще их называют skinning, rigging artist. Сетаперы создают кости и средства (контроллеры) для управления этими костями, с помощью которых аниматоры могут «оживить» модель.

В кино обычно создается множество сложных контроллеров для аниматоров. Например, для лицевой анимации (facial control rig) и мимики модели. В играх можно обойтись и без них, если персонаж не разговаривает в игре.

Для риггинга модели подойдут те же 3D-редакторы, о которых сказано выше. Большинство этих программ - комплексные пакеты для создания трехмерной графики, в том числе и для оснастки модели.

Анимация


Чтобы «оживить» трехмерную модель за работу берутся аниматоры. Главная задача аниматора - сделать движения модели максимально реалистичными. Особенно это актуально в фильмах, когда в кадре трехмерному персонажу нужно взаимодействовать с реальными актерами.

Простейшим методом анимации персонажей является Анимация по ключевым кадрам (Keyframes ) . Аниматор указывает положение персонажа в начальном и конечном кадрах движения, а положение в промежуточных кадрах вычисляется программой. Это простой в реализации способ, но достаточно трудоемкий для создания сложных движений и требует большого умения аниматора для получения реалистичности персонажа.

Существует еще процедурная анимация , при которой используется специальная программа для управления персонажем.

Напомним и про технологию Motion Capture (система захвата движений). Она подразумевает наложение движений реальных актеров на трехмерных персонажей. Эта технология максимально упрощает анимацию, позволяя использовать уже готовые движения актеров.

Негласным лидером в создании трехмерной анимации является Autodesk Maya . Однако, она не так легка в освоении. Помимо Maya отличные инструменты для анимации - 3 Ds Max и Cinema 4 D .

Рендеринг


Завершающий этап - итоговая визуализация (rendering) полученных сцен.

Существует два вида рендеринга - рендеринг в реальном времени и рендеринг не в реальном времени или пре-рендеринг.

В компьютерных играх используется рендеринг в реальном времени. Реакции на действия игрока происходят моментально. Свет, цвет и тени формируются с помощью ранее просчитанных карт и текстур, а объекты перспективно проецируются на экран. Чтобы качество графики при этом не пострадало, в играх часто используются 3D ускорители. Главный критерий в игре - скорость выполнения просчета.

В кино обычно используют пре-рендеринг , когда скорость просчета - не главный фактор, а на первом плане высокое качество изображений. А именно, фотореалистическое качество с физически корректным наложением света и тени. Рендер каждого отдельного кадра может длиться по 20, а то и 100 часов. Фотореалистичный рендер - ресурсоемкая задача, справиться с которой помогут рендер фермы. Они помогают в разы сократить время просчета.

Среди методов рендеринга можно выделить:

  • растеризацию с методом сканирования строк (scanline, rasterization);
  • трассировку лучей (raytracing);
  • метод излучательности (radiosity).

Очень часто методы raytracing и radiosity комбинируются для достижения впечатляющих фотореалистичных результатов.

Стандартные программы трехмерного моделирования включают и функцию рендеринга. Существуют и отдельные рендер-движки. Одни из самых мощных визуализаторов на сегодняшний день - Mental Ray , VRay , Renderman .

Композитинг


Композитинг является важным завершающим этапом постпродакшена.

И это не просто работа над цветом и слоями: композер объединяет все части в единое целое, интегрирует в съемочный материал трехмерных персонажей и другие 3D элементы, устраняет недочеты и убирает лишнее, работает над различными эффектами. Одним словом, создает одну реалистичную сцену. Композер является ответственным за финальный продукт - фильм, игру.

Профессиональные программы для композитинга - Nuke , Adobe After Effects , Eyeon Fusion .

В заключение хочется сказать, что хорошими художниками не становятся в одночасье: нужны многие месяцы и даже годы практики. Выбрав свой путь, старайтесь не расстраиваться, если на первых порах ваши работы далеки от шедевра. Помните: зачастую все, что вы видите в фильмах и играх годами создавалось сотнями профессионалов своего дела. Практикуйтесь и учитесь у профессионалов, и все у вас получится!