Угол φ общими уравнениями A 1 x + B 1 y + C 1 = 0 и A 2 x + B 2 y + C 2 = 0, вычисляется по формуле:

Угол φ между двумя прямыми, заданными каноническими уравнениями (x-x 1)/m 1 = (y-y 1)/n 1 и (x-x 2)/m 2 = (y-y 2)/n 2 , вычисляется по формуле:

Расстояние от точки до прямой

Каждую плоскость в пространстве можно представить как линейное уравнение, называемое общим уравнением плоскости

Частные случаи .

o Если в уравнении (8) , то плоскость проходит через начало координат.

o При (,) плоскость параллельна оси(оси, оси) соответственно.

o При (,) плоскость параллельна плоскости(плоскости, плоскости).

Решение: используем (7)

Ответ: общее уравнение плоскости .

    Пример.

Плоскость в прямоугольной системе координат Oxyz задана общим уравнением плоскости . Запишите координаты всех нормальных векторов этой плоскости.

Нам известно, что коэффициенты при переменных x, y и z в общем уравнении плоскости являются соответствующими координатами нормального вектора этой плоскости. Следовательно, нормальный вектор заданной плоскостиимеет координаты. Множество всех нормальных векторов можно задать как.

Напишите уравнение плоскости, если в прямоугольной системе координат Oxyz в пространстве она проходит через точку , а- нормальный вектор этой плоскости.

Приведем два решения этой задачи.

Из условия имеем . Подставляем эти данные в общее уравнение плоскости, проходящей через точку:

Напишите общее уравнение плоскости параллельной координатной плоскости Oyz и проходящей через точку .

Плоскость, которая параллельна координатной плоскости Oyz, может быть задана общим неполным уравнением плоскости вида . Так как точкапринадлежит плоскости по условию, то координаты этой точки должны удовлетворять уравнению плоскости, то есть, должно быть справедливо равенство. Отсюда находим. Таким образом, искомое уравнение имеет вид.

Решение. Векторное произведение по определению 10.26 ортогонально векторам p и q. Следовательно, оно ортогонально искомой плоскости и вектор можно взять в качестве ее нормального вектора. Найдем координаты вектора n:

то есть . Используя формулу (11.1), получим

Раскрыв в этом уравнении скобки, приходим к окончательному ответу.

Ответ: .

Перепишем вектор нормали в виде и найдём его длину:

Согласно вышесказанному:

Ответ :

У параллельных плоскостей один и тот же вектор нормали. 1) Из уравнения найдём вектор нормали плоскости:.

2) Уравнение плоскости составим по точкеи вектору нормали:

Ответ :

Векторное уравнение плоскости в пространстве

Параметрическое уравнение плоскости в пространстве

Уравнение плоскости, проходящей через данную точку перпендикулярно данному вектору

Пусть в трехмерном пространстве задана прямоугольная декартова система координат. Сформулируем следующую задачу:

Составить уравнение плоскости, проходящей через данную точку M (x 0, y 0, z 0) перпендикулярно данному вектору n = {A , B , C } .

Решение. Пусть P (x , y , z ) - произвольная точка пространства. Точка P принадлежит плоскости тогда и только тогда, когда вектор MP = {x x 0, y y 0, z z 0} ортогонален вектору n = {A , B , C } (рис.1).

Написав условие ортогональности этих векторов (n, MP ) = 0 в координатной форме, получим:

A (x x 0) + B (y y 0) + C (z z 0) = 0

Уравнение плоскости по трем точкам

В векторном виде

В координатах


Взаимное расположение плоскостей в пространстве

– общие уравнения двух плоскостей. Тогда:

1) если , то плоскости совпадают;

2) если , то плоскости параллельны;

3) если или , то плоскости пересекаются и системауравнений

(6)

является уравнениями прямой пересечения данных плоскостей.

Решение : Канонические уравнения прямой составим по формуле:

Ответ :

Берём полученные уравнения и мысленно «отщипываем», например, левый кусочек: . Теперь этот кусочек приравниваем к любому числу (помним, что ноль уже был), например, к единице: . Так как , то и два других «куска» тоже должны быть равны единице. По сути, нужно решить систему:

Составить параметрические уравнения следующих прямых:

Решение : Прямые заданы каноническими уравнениями и на первом этапе следует найти какую-нибудь точку, принадлежащую прямой, и её направляющий вектор.

а) Из уравнений снимаем точку и направляющий вектор: . Точку можно выбрать и другую (как это сделать – рассказано выше), но лучше взять самую очевидную. Кстати, во избежание ошибок, всегда подставляйте её координаты в уравнения.

Составим параметрические уравнения данной прямой:

Удобство параметрических уравнений состоит в том, что с их помощью очень легко находить другие точки прямой. Например, найдём точку , координаты которой, скажем, соответствуют значению параметра :

Таким образом: б) Рассмотрим канонические уравнения . Выбор точки здесь несложен, но коварен: (будьте внимательны, не перепутайте координаты!!!). Как вытащить направляющий вектор? Можно порассуждать, чему параллельна данная прямая, а можно использовать простой формальный приём: в пропорции находятся «игрек» и «зет», поэтому запишем направляющий вектор , а на оставшееся место поставим ноль: .

Составим параметрические уравнения прямой:

в) Перепишем уравнения в виде , то есть «зет» может быть любым. А если любым, то пусть, например, . Таким образом, точка принадлежит данной прямой. Для нахождения направляющего вектора используем следующий формальный приём: в исходных уравнениях находятся «икс» и «игрек», и в направляющем векторе на данных местах записываем нули : . На оставшееся место ставим единицу : . Вместо единицы подойдёт любое число, кроме нуля.

Запишем параметрические уравнения прямой:

Задача 1

Найти косинус угла между прямыми $\frac{x+3}{5} =\frac{y-2}{-3} =\frac{z-1}{4} $ и $\left\{\begin{array}{c} {x=2\cdot t-3} \\ {y=-t+1} \\ {z=3\cdot t+5} \end{array}\right. $.

Пусть в пространстве заданы две прямые: $\frac{x-x_{1} }{m_{1} } =\frac{y-y_{1} }{n_{1} } =\frac{z-z_{1} }{p_{1} } $ и $\frac{x-x_{2} }{m_{2} } =\frac{y-y_{2} }{n_{2} } =\frac{z-z_{2} }{p_{2} } $. Выберем в пространстве произвольную точку и проведем через неё две вспомогательные прямые, параллельные данным. Углом между данными прямыми является любой из двух смежных углов, образованных вспомогательными прямыми. Косинус одного из углов между прямыми можно найти по известной формуле $\cos \phi =\frac{m_{1} \cdot m_{2} +n_{1} \cdot n_{2} +p_{1} \cdot p_{2} }{\sqrt{m_{1}^{2} +n_{1}^{2} +p_{1}^{2} } \cdot \sqrt{m_{2}^{2} +n_{2}^{2} +p_{2}^{2} } } $. Если значение $\cos \phi >0$, то получен острый угол между прямыми, если $\cos \phi

Канонические уравнения первой прямой: $\frac{x+3}{5} =\frac{y-2}{-3} =\frac{z-1}{4} $.

Канонические уравнения второй прямой можно получить из параметрических:

\ \ \

Таким образом, канонические уравнения данной прямой: $\frac{x+3}{2} =\frac{y-1}{-1} =\frac{z-5}{3} $.

Вычисляем:

\[\cos \phi =\frac{5\cdot 2+\left(-3\right)\cdot \left(-1\right)+4\cdot 3}{\sqrt{5^{2} +\left(-3\right)^{2} +4^{2} } \cdot \sqrt{2^{2} +\left(-1\right)^{2} +3^{2} } } =\frac{25}{\sqrt{50} \cdot \sqrt{14} } \approx 0,9449.\]

Задача 2

Первая прямая проходит через заданные точки $A\left(2,-4,-1\right)$ и $B\left(-3,5,6\right)$, вторая прямая -- через заданные точки $C\left(1,-2,8\right)$ и $D\left(6,7,-2\right)$. Найти расстояние между этими прямыми.

Пусть некоторая прямая перпендикулярна к прямым $AB$ и $CD$ и пересекает их в точках $M$ и $N$ соответственно. При таких условиях длина отрезка $MN$ равна расстоянию между прямыми $AB$ и $CD$.

Строим вектор $\overline{AB}$:

\[\overline{AB}=\left(-3-2\right)\cdot \bar{i}+\left(5-\left(-4\right)\right)\cdot \bar{j}+\left(6-\left(-1\right)\right)\cdot \bar{k}=-5\cdot \bar{i}+9\cdot \bar{j}+7\cdot \bar{k}.\]

Пусть отрезок, изображающий расстояние между прямыми, проходит через точку $M\left(x_{M} ,y_{M} ,z_{M} \right)$ на прямой $AB$.

Строим вектор $\overline{AM}$:

\[\overline{AM}=\left(x_{M} -2\right)\cdot \bar{i}+\left(y_{M} -\left(-4\right)\right)\cdot \bar{j}+\left(z_{M} -\left(-1\right)\right)\cdot \bar{k}=\] \[=\left(x_{M} -2\right)\cdot \bar{i}+\left(y_{M} +4\right)\cdot \bar{j}+\left(z_{M} +1\right)\cdot \bar{k}.\]

Векторы $\overline{AB}$ и $\overline{AM}$ совпадают, следовательно, они коллинеарны.

Известно, что если векторы $\overline{a}=x_{1} \cdot \overline{i}+y_{1} \cdot \overline{j}+z_{1} \cdot \overline{k}$ и $\overline{b}=x_{2} \cdot \overline{i}+y_{2} \cdot \overline{j}+z_{2} \cdot \overline{k}$ коллинеарны, то их координаты пропорциональны, то есть $\frac{x_{{\it 2}} }{{\it x}_{{\it 1}} } =\frac{y_{{\it 2}} }{{\it y}_{{\it 1}} } =\frac{z_{{\it 2}} }{{\it z}_{{\it 1}} } $.

$\frac{x_{M} -2}{-5} =\frac{y_{M} +4}{9} =\frac{z_{M} +1}{7} =m$, где $m$ -- результат деления.

Отсюда получаем: $x_{M} -2=-5\cdot m$; $y_{M} +4=9\cdot m$; $z_{M} +1=7\cdot m$.

Окончательно получаем выражения для координат точки $M$:

Строим вектор $\overline{CD}$:

\[\overline{CD}=\left(6-1\right)\cdot \bar{i}+\left(7-\left(-2\right)\right)\cdot \bar{j}+\left(-2-8\right)\cdot \bar{k}=5\cdot \bar{i}+9\cdot \bar{j}-10\cdot \bar{k}.\]

Пусть отрезок, изображающий расстояние между прямыми, проходит через точку $N\left(x_{N} ,y_{N} ,z_{N} \right)$ на прямой $CD$.

Строим вектор $\overline{CN}$:

\[\overline{CN}=\left(x_{N} -1\right)\cdot \bar{i}+\left(y_{N} -\left(-2\right)\right)\cdot \bar{j}+\left(z_{N} -8\right)\cdot \bar{k}=\] \[=\left(x_{N} -1\right)\cdot \bar{i}+\left(y_{N} +2\right)\cdot \bar{j}+\left(z_{N} -8\right)\cdot \bar{k}.\]

Векторы $\overline{CD}$ и $\overline{CN}$ совпадають, следовательно, они коллинеарны. Применяем условие коллинеарности векторов :

$\frac{x_{N} -1}{5} =\frac{y_{N} +2}{9} =\frac{z_{N} -8}{-10} =n$, где $n$ -- результат деления.

Отсюда получаем: $x_{N} -1=5\cdot n$; $y_{N} +2=9\cdot n$; $z_{N} -8=-10\cdot n$.

Окончательно получаем выражения для координат точки $N$:

Строим вектор $\overline{MN}$:

\[\overline{MN}=\left(x_{N} -x_{M} \right)\cdot \bar{i}+\left(y_{N} -y_{M} \right)\cdot \bar{j}+\left(z_{N} -z_{M} \right)\cdot \bar{k}.\]

Подставляем выражения для координат точек $M$ и $N$:

\[\overline{MN}=\left(1+5\cdot n-\left(2-5\cdot m\right)\right)\cdot \bar{i}+\] \[+\left(-2+9\cdot n-\left(-4+9\cdot m\right)\right)\cdot \bar{j}+\left(8-10\cdot n-\left(-1+7\cdot m\right)\right)\cdot \bar{k}.\]

Выполнив действия, получаем:

\[\overline{MN}=\left(-1+5\cdot n+5\cdot m\right)\cdot \bar{i}+\left(2+9\cdot n-9\cdot m\right)\cdot \bar{j}+\left(9-10\cdot n-7\cdot m\right)\cdot \bar{k}.\]

Поскольку прямые $AB$ и $MN$ перпендикулярны, то скалярное произведение соответствующих векторов равно нулю, то есть $\overline{AB}\cdot \overline{MN}=0$:

\[-5\cdot \left(-1+5\cdot n+5\cdot m\right)+9\cdot \left(2+9\cdot n-9\cdot m\right)+7\cdot \left(9-10\cdot n-7\cdot m\right)=0;\] \

Выполнив действия, получаем первое уравнение для определения $m$ и $n$: $155\cdot m+14\cdot n=86$.

Поскольку прямые $CD$ и $MN$ перпендикулярны, то скалярное произведение соответствующих векторов равно нулю, то есть $\overline{CD}\cdot \overline{MN}=0$:

\ \[-5+25\cdot n+25\cdot m+18+81\cdot n-81\cdot m-90+100\cdot n+70\cdot m=0.\]

Выполнив действия, получаем второе уравнение для определения $m$ и $n$: $14\cdot m+206\cdot n=77$.

Находим $m$ и $n$, решив систему уравнений $\left\{\begin{array}{c} {155\cdot m+14\cdot n=86} \\ {14\cdot m+206\cdot n=77} \end{array}\right. $.

Применяем метод Крамера:

\[\Delta =\left|\begin{array}{cc} {155} & {14} \\ {14} & {206} \end{array}\right|=31734; \] \[\Delta _{m} =\left|\begin{array}{cc} {86} & {14} \\ {77} & {206} \end{array}\right|=16638; \] \[\Delta _{n} =\left|\begin{array}{cc} {155} & {86} \\ {14} & {77} \end{array}\right|=10731;\] \

Находим координаты точек $M$ и $N$:

\ \

Окончательно:

Окончательно записываем вектор $\overline{MN}$:

$\overline{MN}=\left(2,691-\left(-0,6215\right)\right)\cdot \bar{i}+\left(1,0438-0,7187\right)\cdot \bar{j}+\left(4,618-2,6701\right)\cdot \bar{k}$ или $\overline{MN}=3,3125\cdot \bar{i}+0,3251\cdot \bar{j}+1,9479\cdot \bar{k}$.

Расстояние между прямыми $AB$ и $CD$ -- это длина вектора $\overline{MN}$:$d=\sqrt{3,3125^{2} +0,3251^{2} +1,9479^{2} } \approx 3,8565$ лин. ед.

а. Пусть даны две прямые Эти прямые как было указано в главе 1, образуют различные положительные и отрицательные углы, которые при этом могут быть как острыми, так и тупыми. Зная один из этих углов мы легко найдем какой-либо другой.

Между прочим, у всех этих углов численная величина тангенса одна и та же, различие может быть только в знаке

Уравнения прямых. Числа суть проекции направляющих векторов первой и второй прямой Угол между этими векторами равен одному из углов, образуемых прямыми линиями. Поэтому задача сводится к определению угла между векторами, Мы получим

Для простоты можно условиться под углом между двумя прямыми понимать острый положительный угол (как, например, на рис. 53).

Тогда тангенс этого угла будет всегда положительным. Таким образом, если в правой части формулы (1) получится знак минус, то мы его должны отбросить, т. е. сохранить только абсолютную величину.

Пример. Определить угол между прямыми

По формуле (1) имеем

с. Если будет указано, какая из сторон угла является его началом и какая концом, то, отсчитывая всегда направление угла против часовой стрелки, мы можем формулы (1) извлечь нечто большее. Как нетрудно убедиться из рис. 53 знак получающийся в правой части формулы (1), будет указывать, какой именно - острый или тупой - угол образует вторая прямая с первой.

(Действительно, из рис, 53 мы усматриваем, что угол между первым и вторым направляющими векторами или равен искомому углу между прямыми, или отличается от него на ±180°.)

d. Если прямые параллельны, то параллельны и их направляющие векторы, Применяя условие параллельности двух векторов получим!

Это есть условием необходимое и достаточное для параллельности двух прямых.

Пример. Прямые

параллельны, так как

e. Если прямые перпендикулярны то их направляющие векторы тоже перпендикулярны. Применяя условие перпендикулярности двух векторов мы получим условие перпендикулярности двух прямых а именно

Пример. Прямые

перпендикулярны ввиду того, что

В связи с условиями параллельности и перпендикулярности решим следующие две задачи.

f. Через точку провести прямую параллельно данной прямой

Решение проводится так. Так как искомая прямая параллельна данной, то за ее направляющий вектор можно взять тот же самый, что и у данной прямой, т. е. вектор с проекциями А и В. А тогда уравнение искомой прямой напишется в форме (§ 1)

Пример. Уравнение прямой, проходящей через точку (1; 3) параллельно прямой

будет следующее!

g. Через точку провести прямую перпендикулярно данной прямой

Здесь за направляющий вектор уже не годится брать вектор с проекциями А и , а надо веять вектор, ему перпендикулярный. Проекции этого вектора должны быть выбраны следовательно, согласно условию перпендикулярности обоих векторов, т. е. согласно условию

Выполнить же это условие можно бесчисленным множеством способов, так как здесь одно уравнение с двумя неизвестными Но проще всего взять иди же Тогда уравнение искомой прямой напишется в форме

Пример. Уравнение прямой, проходящей через точку (-7; 2) в перпендикулярной прямой

будет следующее (по второй формуле)!

h. В том случаем когда прямые заданы уравнениями вида

переписывая эти уравнения иначе, имеем

Определение

Геометрическая фигура, состоящая из всех точек плоскости, заключёнными между двумя лучами выходящими из одной точки, называется плоским углом .

Определение

Углом между двумя пересекающимися прямыми называется величина наименьшего плоского угла при пересечении данных прямых. Если две прямые параллельны, то угол между ними принимается равным нулю.

Величина угла между двумя пересекающимися прямыми (если измерять плоские углы в радианах) может принимать значения от нуля до $\dfrac{\pi}{2}$.

Определение

Углом между двумя скрещивающимися прямыми называется величина, равная углу между двумя пересекающимися прямыми, параллельными скрещивающимся. Угол между прямыми $a$ и $b$ обозначается $\angle (a, b)$.

Корректность введённого определения следует из следующей теоремы.

Теорема о плоских углах с параллельными сторонами

Величины двух выпуклых плоских углов с соответственно параллельными и одинаково направленными сторонами равны.

Доказательство

Если углы развёрнутые, то они оба равны $\pi$. Если они не развёрнутые, то отложим на соответственных сторонах углов $\angle AOB$ и $\angle A_1O_1B_1$ равные отрезки $ON=O_1ON_1$ и $OM=O_1M_1$.

Четырёхугольник $O_1N_1NO$ является параллелограммом, так как его противоположные стороны $ON$ и $O_1N_1$ равны и параллельны. Аналогично, четырёхугольник $O_1M_1MO$ является параллелограммом. Отсюда $NN_1 = OO_1 = MM_1$ и $NN_1 \parallel OO_1 \parallel MM_1$, следовательно, $NN_1=MM_1$ и $NN_1 \parallel MM_1$ по транзитивности. Четырёхугольник $N_1M_1MN$ - параллелограмм, так как его противоположные стороны равны и параллельны. Значит, и отрезки $NM$ и $N_1M_1$ равны. Треугольники $ONM$ и $O_1N_1M_1$ равны по третьему признаку равенства треугольников, значит, и соответственные углы $\angle NOM$ и $\angle N_1O_1M_1$ равны.

Пусть две прямые l и m на плоскости в декартовой системе координат заданы общими уравнениями: l: A 1 x + B 1 y + C 1 = 0, m: A 2 x + B 2 y + C 2 = 0

Векторы нормалей к данным прямым: = (A 1 , B 1) – к прямой l,

= (A 2 , B 2) – к прямой m.

Пусть j - угол между прямыми l и m.

Так как углы с взаимно перпендикулярными сторонами либо равны, либо в сумме составляют p, то , то есть cos j = .

Итак, мы доказали следующую теорему.

Теорема. Пусть j - угол между двумя прямыми на плоскости, и пусть эти прямые заданы в декартовой системе координат общими уравнениями A 1 x + B 1 y + C 1 = 0 и A 2 x + B 2 y + C 2 = 0. Тогда cos j = .

Упражнения.

1) Выведите формулу для вычисления угла между прямыми, если:

(1) обе прямые заданы параметрически; (2) обе прямые заданы каноническими уравнениями; (3) одна прямая задана параметрически, другая прямая – общим уравнением; (4) обе прямые заданы уравнением с угловым коэффициентом.

2) Пусть j - угол между двумя прямыми на плоскости, и пусть эти прямые заданы декартовой системе координат уравнениями y = k 1 x + b 1 и y =k 2 x + b 2 .

Тогда tg j = .

3) Исследуйте взаимное расположение двух прямых, заданных общими уравнениями в декартовой системе координат, и заполните таблицу:

Расстояние от точки до прямой на плоскости.

Пусть на плоскости в декартовой системе координат прямая l задана общим уравнением Ax + By + C = 0. Найдем расстояние от точки M(x 0 , y 0) до прямой l.

Расстояние от точки M до прямой l – это длина перпендикуляра HM (H Î l, HM ^ l).

Вектор и вектор нормали к прямой l коллинеарны, так что | | = | | | | и | | = .

Пусть координаты точки H (x,y).

Так как точка H принадлежит прямой l, то Ax + By + C = 0 (*).

Координаты векторов и : = (x 0 - x, y 0 - y), = (A, B).

| | = = =

(C = -Ax - By , см. (*))

Теорема. Пусть прямая l задана в декартовой системе координат общим уравнением Ax + By + C = 0. Тогда расстояние от точки M(x 0 , y 0) до данной прямой вычисляется по формуле: r (M; l) = .

Упражнения.

1) Выведите формулу для вычисления расстояния от точки до прямой, если: (1) прямая задана параметрически; (2) прямая задана каноническим уравнениям; (3) прямая задана уравнением с угловым коэффициентом.

2) Напишите уравнение окружности, касающейся прямой 3x – y = 0,с центром в точке Q(-2,4).

3) Напишите уравнения прямых, делящих углы, образованные пересечением прямых 2x + y - 1 = 0 и x + y + 1 = 0 , пополам.

§ 27. Аналитическое задание плоскости в пространстве

Определение . Вектором нормали к плоскости будем называть ненулевой вектор, любой представитель которого перпендикулярен данной плоскости.

Замечание. Ясно, что если хотя бы один представитель вектора перпендикулярен плоскости, то и все остальные представители вектора перпендикулярны этой плоскости.

Пусть в пространстве задана декартова система координат.

Пусть дана плоскость a, = (A, B, C) – вектор нормали к этой плоскости, точка M (x 0 , y 0 , z 0) принадлежит плоскости a.

Для любой точки N(x, y, z) плоскости a векторы и ортогональны, то есть их скалярное произведение равно нулю: = 0. Запишем последнее равенство в координатах: A(x - x 0) + B(y - y 0) + C(z - z 0) = 0.

Пусть -Ax 0 - By 0 - Cz 0 = D, тогда Ax + By + Cz + D = 0.

Возьмем точку К (x, y) такую, что Ax + By + Cz + D = 0. Так как D = -Ax 0 - By 0 - Cz 0 , то A(x - x 0) + B(y - y 0) + C(z - z 0) = 0. Так как координаты направленного отрезка = (x - x 0 , y - y 0 , z - z 0), то последнее равенство означает, что ^ , и, следовательно, K Î a.

Итак, мы доказали следующую теорему:

Теорема. Любую плоскость в пространстве в декартовой системе координат можно задать уравнением вида Ax + By + Cz + D = 0 (A 2 + B 2 + C 2 ≠ 0), где (A, B, C) – координаты вектора нормали к этой плоскости.

Верно и обратное.

Теорема. Любое уравнение вида Ax + By + Cz + D = 0 (A 2 + B 2 + C 2 ≠ 0) в декартовой системе координат задает некоторую плоскость, при этом (A, B, C) – координаты вектора нормали к этой плоскости.

Доказательство.

Возьмем точку M (x 0 , y 0 , z 0) такую, что Ax 0 + By 0 + Cz 0 + D = 0 и вектор = (A, B, C) ( ≠ q).

Через точку M перпендикулярно вектору проходит плоскость (и при том только одна). По предыдущей теореме эта плоскость задается уравнением Ax + By + Cz + D = 0.

Определение. Уравнение вида Ax + By + Cz + D = 0 (A 2 + B 2 + C 2 ≠ 0) называется общим уравнением плоскости .

Пример.

Напишем уравнение плоскости, проходящей через точки M (0,2,4), N (1,-1,0) и K (-1,0,5).

1. Найдем координаты вектора нормали к плоскости (MNK). Так как векторное произведение ´ ортогонально не коллинеарным векторам и , то вектор коллинеарен ´ .

= (1, -3, -4), = (-1, -2, 1);

´ = ,

´ = (-11, 3, -5).

Итак, в качестве вектора нормали возьмем вектор = (-11, 3, -5).

2. Воспользуемся теперь результатами первой теоремы:

уравнение данной плоскости A(x - x 0) + B(y - y 0) + C(z - z 0) = 0, где (A, B, C) – координаты вектора нормали, (x 0 , y 0 , z 0) – координаты точки лежащей в плоскости (например, точки M).

11(x - 0) + 3(y - 2) - 5(z - 4) = 0

11x + 3y – 5z + 14 = 0

Ответ: -11x + 3y - 5z + 14 = 0.

Упражнения.

1) Напишите уравнение плоскости, если

(1) плоскость проходит через точку M (-2,3,0) параллельно плоскости 3x + y + z = 0;

(2) плоскость содержит ось (Ox) и перпендикулярна плоскости x + 2y – 5z + 7 = 0.

2) Напишите уравнение плоскости, проходящей через три данные точки.

§ 28. Аналитическое задание полупространства*

Замечание* . Пусть фиксирована некоторая плоскость. Под полупространством мы будем понимать множество точек, лежащих по одну сторону от данной плоскости, то есть две точки лежат в одном полупространстве, если отрезок, их соединяющий, не пересекает данную плоскость. Данная плоскость называется границей этого полупространства . Объединение данной плоскости и полупространства будем называть замкнутым полупространством .

Пусть в пространстве фиксирована декартова система координат.

Теорема. Пусть плоскость a задана общим уравнением Ax + By + Cz + D = 0. Тогда одно из двух полупространств, на которые плоскость a делит пространство, задается неравенством Ax + By + Cz + D > 0, а второе полупространство задается неравенством Ax + By + Cz + D < 0.

Доказательство.

Отложим вектор нормали = (A, B, С) к плоскости a от точки M (x 0 , y 0 , z 0), лежащей на данной плоскости: = , M Î a, MN ^ a. Плоскость делить пространство на два полупространства: b 1 и b 2 . Ясно, что точка N принадлежит одному из этих полупространств. Без ограничения общности будем считать, что N Î b 1 .

Докажем, что полупространство b 1 задается неравенством Ax + By + Cz + D > 0.

1) Возьмем точку K(x,y,z) в полупространстве b 1 . Угол Ð NMK – угол между векторами и - острый, поэтому скалярное произведение этих векторов положительно: > 0. Запишем это неравенство в координатах: A(x - x 0) + B(y - y 0) + C(z - z 0) > 0, то есть Ax + By + Cy - Ax 0 - By 0 - C z 0 > 0.

Так как M Î b 1 , то Ax 0 + By 0 + C z 0 + D = 0, поэтому -Ax 0 - By 0 - C z 0 = D. Следовательно, последнее неравенство можно записать так: Ax + By + Cz + D > 0.

2) Возьмем точку L(x,y) такую, что Ax + By + Cz + D > 0.

Перепишем неравенство, заменив D на (-Ax 0 - By 0 - C z 0) (так как M Î b 1 , то Ax 0 + By 0 + C z 0 + D = 0): A(x - x 0) + B(y - y 0) + C(z - z 0) > 0.

Вектор с координатами (x - x 0 ,y - y 0 , z - z 0) – это вектор , поэтому выражение A(x - x 0) + B(y - y 0) + C(z - z 0) можно понимать, как скалярное произведение векторов и . Так как скалярное произведение векторов и положительно, то угол между ними острый и точка L Î b 1 .

Аналогично можно доказать, что полупространство b 2 задается неравенством Ax + By + Cz + D < 0.

Замечания.

1) Ясно, что доказательство, приведенное выше, не зависит от выбора точки M в плоскости a.

2) Ясно, что одно и то же полупространство можно задать различными неравенствами.

Верно и обратное.

Теорема. Любое линейное неравенство вида Ax + By + Cz + D > 0 (или Ax + By + Cz + D < 0) (A 2 + B 2 + C 2 ≠ 0) задает в пространстве в декартовой системе координат полупространство с границей Ax + By + Cz + D = 0.

Доказательство.

Уравнение Ax + By + Cz + D = 0 (A 2 + B 2 + C 2 ≠ 0) в пространстве задает некоторую плоскость a (см. § …). Как было доказано в предыдущей теореме одно из двух полупространств, на которые плоскость делит пространство задается неравенством Ax Ax + By + Cz + D > 0.

Замечания.

1) Ясно, что замкнутое полупространство можно задать нестрогим линейным неравенством, и любое нестрогое линейное неравенство в декартовой системе координат задает замкнутое полупространство.

2) Любой выпуклый многогранник можно задать как пересечение замкнутых полупространств (границы которых – это плоскости, содержащие грани многогранника), то есть аналитически – системой линейных нестрогих неравенств.

Упражнения.

1) Докажите две представленные теоремы для произвольной аффинной системы координат.

2) Верно ли обратное, что любая ли система нестрогих линейных неравенств задает выпуклый многоугольник?

Упражнение.

1) Исследуйте взаимное расположение двух плоскостей, заданных общими уравнениями в декартовой системе координат, и заполните таблицу.