РАЗВИТИЕ

Источником развития скелетной мышечной ткани являются миотомы сомитов . Стадии развития:

  • Миобластическая стадия . Клетки миотомов превращаются в миобласты и мигрируют к местам закладки мышц. Миобласты делятся митозом. Часть миобластов обособляется в виде миосателлитоцитов, которые сохраняют свойства малодифференцированных клеток до конца жизни.
  • Миосимпластическая стадия . Миобласты располагаются в виде цепочек и сливаются друг с другом. Образуются миосимпласты. В их цитоплазме образуются миофибриллы из сократительных белков, которые начинают синтезироваться ещё в миобластах. Миофибриллы лежат на периферии миосимласта, ядра занимают центральное положение.
  • Стадия миотубул . В симпластах увеличивается число миофибрилл. Длина их увеличивается.
  • Стадия зрелого мышечного волокна . В эту стадию объём миофибрилл увеличивается до такой степени, что они занимают основную массу волокна, смещаясь в центр и сдвигая ядра на периферию.

СТРОЕНИЕ МЫШЕЧНОГО ВОЛОКНА .

Мышечные волокна являются структурно-функциональным элементом скелетной мышечной ткани. Они имеют длину до 20-30 см, толщину около 100 мкм. Состоят из двух частей:

· симпласта;

· миосателлитоцитов.

Мышечное волокно снаружи покрыто сарколеммой . Сарколемма состоит из толстой базальной мембраны и плазмолеммы мышечного волокна. Между базальной мембраной и плазмолеммой в отдельных участках имеются углубления, в которых расположены миосателлитоциты . Миосателлитоциты – камбиальные клетки скелетной мышечной ткани. Миосателлитоцит – типичная одноядерная клетка, окруженная своей плазмолеммой, имеет слабо развитые органеллы.

Миосимпласт содержит множество (до несколько тысяч) ядер, лежащих на периферии волокна, под сарколеммой.

Протоплазму волокна называют саркоплазмой. В ней находятся органеллы общего значения (за исключением центриолей), органеллы специального значения – миофибриллы , и включения.

СТРОЕНИЕ МИОФИБРИЛЛ .

Миофибриллы , числом до двух тысяч в одном волокне, занимают основную часть волокна. Их длина равна длине волокна, диаметр до 2 мкм. В каждой миофибрилле при световой микроскопии обнаруживается исчерченность – чередование светлых и тёмных дисков. В поляризованном свете тёмные диски имеют двойное лучепреломление и поэтому тёмные диски называются анизотропными , или А-дисками . Светлые диски не имеют двойного лучепреломления и называются изотропными , или I-дисками .

Посередине I-диска проходит тёмная полоска, которая называется Z-линией, или телофрагмой. На поперечном разрезе телофрагма представляет собой решётку, в узлах которой закрепляются актиновые филаменты.

В центре А-диска находится более светлая полоска Н, а посередине её проходит тёмная линия М , или мезофрагма .

Участок миофибриллы, лежащий между соседними Z-линиями, называется саркомером. Саркомер – структурно-функциональная единица миофибриллы. В состав саркомера последовательно входят:

· Z-линия;

· ½ диска I;

· диск А;

· ½ диска I

· вторая Z-линия.

Каждый саркомер состоит из тонких актиновых и толстых миозиновых филаментов.

В составе тонких (диаметр 5 нм) актиновых филаментов входят белки:

· актин;

· тропонин;

· тропомиозин .

Молекулы актина имеют глобулярное строение – G-актин. Эти молекулы соединяются вместе в длинные цепочки – фибриллярный, F-актин . В актиновых филаментах две цепи F-актина образуют двойную спираль. В бороздках между цепями спирали лежат молекулы тропомиозина . К молекулам тропомиозина на равных расстояниях друг от друга прикрепляются молекулы тропонина. Молекула тропонина состоит из трёх субъединиц: TnT, TnI, TnC . TnT осуществляет прикреплениетропонина к тропомиозину.TnC отвечает за связывание с ионами кальция. TnI препятствует взаимодействию миозина с актином.

Толстые филаменты (диаметр 12 нм) содержат белок миозин . Каждая молекула миозина состоит из двух частей: головки и хвоста и может сгибаться в двух местах – шарнирных участках. Головка миозина имеют АТФ-азную активность и способна расщеплять АТФ с образованием энергии. Молекулы миозина соединяются в пучки и образуют толстые миозиновые филаменты. По периферии толстых филаментов находятся участки, содержащие головки миозина. Центральная часть не содержит головок.

В составе саркомера толстые филаменты лежат только в диске А. Тонкие филаменты расположены в дискеI, но концами частично заходят в диск А между миозиновыми филаментами. Та часть диска А, которая содержит и актиновые и миозиновые филаменты, выглядит на срезах более тёмной, а та его часть, которая содержит только миозиновые филаменты, светлее. Эта часть диска А, которая содержит только миозиновые филаменты, и составляет полоску Н. Таким образом:

· диск I состоит из актиновых филаментов;

· полоска Н диска А состоит из миозиновых филаментов;

· на периферии диска А есть зона пересечения актиновых и миозиновых филаментов.

На поперечном срезе миофибриллы можно видеть, что в зоне пересечения вокруг одной толстой филаменты лежат шесть тонких филамент.

Тонкие филаменты неподвижно прикреплены к Z-линиям. В состав Z-линий входят белки α-актинин, десмин, виментин.

Линия М в центре Н-полоски – место соединения всех миозиновых филаментов друг с другом. В их скреплении участвуют белки миомезин и С-белок.

Тема 15. МЫШЕЧНЫЕ ТКАНИ. СКЕЛЕТНАЯ МЫШЕЧНАЯ ТКАНЬ

Свойством сократимости обладают практически все виды клеток благодаря наличию в их цитоплазме сократительного аппарата, представленного сетью тонких микрофиламентов (5 – 7 нм), состоящих из сократительных белков актина, миозина, тропомиозина. За счет взаимодействия названных белков-микрофиламентов осуществляются сократительные процессы и обеспечивается движение в цитоплазме гиалоплазмы, органелл, вакуолей, образование псевдоподий и инвагинаций плазмолеммы, а также процессы фаго– и пиноцитоза, экзоцитоза, деления и перемещения клеток. Содержание сократительных элементов (а следовательно, и сократительные процессы) неодинаково выражены в различных типах клеток. Наиболее выражены сократительные структуры в клетках, основной функцией которых является сокращение. Такие клетки или их производные образуют мышечные ткани, которые обеспечивают сократительные процессы в полых внутренних органах и сосудах, перемещение частей тела относительно друг друга, поддержание позы и перемещение организма в пространстве. Помимо движения, при сокращении выделяется большое количество тепла, а следовательно, мышечные ткани участвуют в терморегуляции организма.

Мышечные ткани неодинаковы по строению, источникам происхождения и иннервации, функциональным особенностям.

Любая разновидность мышечной ткани, помимо сократительных элементов (мышечных клеток и мышечных волокон), включает в себя клеточные элементы и волокна рыхлой волокнистой соединительной ткани и сосуды, которые обеспечивают трофику и осуществляют передачу усилий сокращения мышечных элементов.

Мышечная ткань подразделяется по строению на гладкую (неисчерченную) и поперечно-полосатую (исчерченную). Каждая из двух групп, в свою очередь, подразделяется на виды по источникам происхождения, строению и функциональным особенностям.

Гладкая мышечная ткань, входящая в состав внутренних органов и сосудов, развивается из мезенхимы. К специальным мышечным тканям нейрального происхождения относятся гладкомышечные клетки радужной оболочки, эпидермального происхождения – миоэпителиальные клетки слюнных, слезных, потовых и молочных желез.

Поперечно-полосатая мышечная ткань подразделяется на скелетную и сердечную. Обе эти разновидности развиваются из мезодермы, но из разных ее частей: скелетная – из миотомов сомитов, сердечная – из висцеральных листков спланхиотом.

Поперечно-полосатая скелетная мышечная ткань

Как уже отмечалось, структурно-функциональной единицей этой ткани является мышечное волокно . Оно представляет собой вытянутое цилиндрическое образование с заостренными концами длиной от 1 до 40 мм (а по некоторым данным – до 120 мм), диаметром 0,1 мм. Мышечное волокно окружено оболочкой сарколеммой, в которой под электронным микроскопом отчетливо выделяются два листка: внутренний листок является типичной плазмолеммой, а наружный представляет собой тонкую соединительно-тканную пластинку (базальную пластинку).

Основным структурным компонентом мышечного волокна является миосимпласт. Таким образом, мышечное волокно является комплексным образованием и состоит из следующих основных структурных компонентов:

1) миосимпласта;

2) клеток-миосателлитов;

3) базальной пластинки.

Базальная пластинка образована тонкими коллагеновыми и ретикулярными волокнами, относится к опорному аппарату и выполняет вспомогательную функцию передачи сил сокращения на соединительно-тканные элементы мышцы.

Клетки-миосателлиты являются ростковыми элементами мышечных волокон, играющими важную роль в процессах физиологической и репаративной регенерации.

Миосимпласт является основным структурным компонентом мышечного волокна как по объему, так и по выполняемым функциям. Он образуется посредством слияния самостоятельных недифференцированных мышечных клеток – миобластов.

Миосимпласт можно рассматривать как вытянутую гигантскую многоядерную клетку, состоящую из большого числа ядер, цитоплазмы (саркоплазмы), плазмолеммы, включений, общих и специализированных органелл.

В миосимпласте до 10 тыс. продольно вытянутых светлых ядер, располагающихся на периферии под плазмолеммой. Вблизи ядер локализуются фрагменты слабо выраженной зернистой эндоплазматической сети, пластинчатого комплекса Гольджи и небольшое количество митохондрий. Центриоли в симпласте отсутствуют. В саркоплазме имеются включения гликогена и миоглобина.

Отличительной особенностью миосимпласта является также наличие в нем:

1) миофибрилл;

2) саркоплазматической сети;

3) канальцев Т-системы.

Миофибриллы – сократительные элементы миосимпласта локализуются в центральной части саркоплазмы миосимпласта.

Они объединяются в пучки, между которыми располагаются прослойки саркоплазмы. Между миофибриллами локализуется большое количество митохондрий (сакросом). Каждая миофибрилла простирается продольно на протяжении всего миосимпласта и своими свободными концами прикрепляется к его плазмолемме у конических концов. Диаметр миофибриллы составляет 0,2 – 0,5 мкм.

По своему строению миофибриллы неоднородны по протяжению, подразделяются на темные (анизотропные), или А-диски, и светлые (изотропные), или I-диски. Темные и светлые диски всех миофибрилл располагаются на одном уровне и обусловливают поперечную исчерченность всего мышечного волокна. Диски в свою очередь, состоят из более тонких волоконцев – протофибрилл, или миофиламентов. Темные диски состоят из миозина, светлые – из актина.

Посередине I-диска поперечно актиновым микрофиламентам, проходит темная полоска – телофрагма (или Z-линия), посередине А-диска проходит менее выраженная мезофрагма, (или М-линия).

Актиновые миофиламенты посредине I-диска скрепляются белками, составляющими Z-линию, а свободными концами частично входят в А-диск между толстыми миофиламентами.

При этом вокруг одного миозинового филамента располагаются шесть актиновых. При частичном сокращении миофибриллы актиновые филаменты как бы втягиваются в А-диск, и в нем образуется светлая зона (или Н-полоска), ограниченная свободными концами микрофиламентов. Ширина Н-полоски зависит от степени сокращения миофибриллы.

Участок миофибриллы, расположенный между двумя Z-полосками, носит название саркомера и является структурно-функциональной единицей миофибриллы. Саркомер включает в себя А-диск и расположенные по сторонам от него две половины I-диска. Следовательно, каждая миофибрилла представляет собой совокупность саркомеров. Именно в саркомере осуществляются процессы сокращения. Следует отметить, что конечные саркомеры каждой миофибриллы прикрепляются к плазмолемме миосимпласта при помощи актиновых миофиламентов.

Структурные элементы саркомера в расслабленном состоянии можно выразить формулой:

Z + 1/2I = 1/2А + Ь + 1/2А + 1/2I + Z.

Процесс сокращения осуществляется при взаимодействии актиновых и миозиновых филаментов с образованием между ними актомиозиновых «мостиков», посредством которых происходит втягивание актиновых филаментов в А-диск и укорочение саркомера.

Для развития этого процесса необходимы три условия:

1) наличие энергии в форме АТФ;

2) наличие ионов кальция;

3) наличие биопотенциала.

АТФ образуется в саркосомах (митохондриях), в большом количестве локализованных между миофибриллами. Выполнение второго и третьего условия осуществляется при помощи специальных органелл мышечной ткани – саркоплазматической сети (аналога эндоплазматической сети обычных клеток) и системы Т-канальцев.

Саркоплазматическая сеть представляет собой видоизмененную гладкую эндоплазматическую сеть и состоит из расширенных полостей и анастомозирующих канальцев, окружающих миофибриллы.

При этом саркоплазматическая сеть подразделяется на фрагменты, окружающие отдельные саркомеры. Каждый фрагмент состоит из двух терминальных цистерн, соединенных полыми анастомозирующими канальцами – L-канальцами. При этом терминальные цистерны охватывают саркомер в области I-диска, а канальцы – в области А-диска. В терминальных цистернах и канальцах содержатся ионы кальция, которые при поступлении нервного импульса и достижении волны деполяризации мембран саркоплазматической сети выходят из цистерн и канальцев и распределяются между актиновыми и миозиновыми микрофиламентами, инициируя их взаимодействие.

После прекращения волны деполяризации ионы кальция устремляются обратно в терминальные цистерны и канальца.

Таким образом, саркоплазматическая сеть является не только резервуаром для ионов кальция, но и играет роль кальциевого насоса.

Волна деполяризации передается на саркоплазматическую сеть от нервного окончания вначале по плазмолемме, а затем по Т-канальцам, которые не являются самостоятельными структурными элементами. Они представляют собой трубчатые впячивания плазмолеммы в саркоплазму. Проникая вглубь, Т-канальцы разветвляются и охватывают каждую миофибриллу в пределах одного пучка строго на определенном уровне, обычно на уровне Z-полоски или несколько медиальнее – в области соединения актиновых и миозиновых филаментов. Следовательно, к каждому саркомеру подходят и окружают его два Т-канальца. По сторонам от каждого Т-канальца располагаются две терминальные цистерны саркоплазматической сети соседних саркомеров, которые вместе с Т-канальцами составляют триаду. Между стенкой Т-канальца и стенками терминальных цистерн имеются контакты, через которые волна деполяризации передается на мембраны цистерн и обусловливает выход из них ионов кальция и начало сокращения.

Таким образом, функциональная роль Т-канальцев заключается в передаче возбуждения с плазмолеммы на саркоплазматическую сеть.

Для взаимодействия актиновых и миозиновых филаментов и последующего сокращения, кроме ионов кальция, необходима также энергия в виде АТФ, которая вырабатывается в саркосомах, в большом количестве располагающихся между миофибриллами.

Под влиянием ионов кальция стимулируется АТФ-азная активность миозина, что приводит к расщеплению АТФ с образованием АДФ и выделением энергии. Благодаря выделившейся энергии устанавливаются «мостики» между головками белка миозина и определенными точками на белке актине, и за счет укорочения этих «мостиков» происходит подтягивание актиновых филаментов между миозиновыми.

Затем эти связи распадаются, с использованием энергии АТФ и головки миозина образуются новые контакты с другими точками на актиновом филаменте, но расположенными дистальнее предыдущих. Так происходит постепенное втягивание актиновых филаментов между миозиновыми и укорочение саркомера. Степень этого сокращения зависит от концентрации свободных ионов кальция вблизи миофиламентов и от содержания АТФ.

При полном сокращении саркомера актиновые филаменты достигают М-полоски саркомера. При этом исчезают Н-полоска и I-диски, а формула саркомера может быть выражена следующим образом:

Z + 1/2IA + M + 1/2AI + Z.

При частичном сокращении формула саркомера будет выглядеть так:

Z + 1/nI + 1/nIA + 1/2H + M + 1/2H + 1/nAI + 1/nI + Z.

Одновременное и содружественное сокращение всех саркомеров каждой миофибриллы приводит к сокращению всего мышечного волокна. Крайние саркомеры каждой миофибриллы прикрепляются актиновыми миофиламентами к плазмолемме миосимпласта, которая на концах мышечного волокна имеет складчатый характер. При этом на концах мышечного волокна базальная пластинка не заходит в складки плазмолеммы. Ее прободают тонкие коллагеновые и ретикулярные волокна, проникают в глубь складок плазмолеммы и прикрепляются в тех ее местах, к которым с внутренней стороны прикрепляются актиновые филаменты дистальных саркомеров.

Благодаря этому создается прочная связь миосимпласта с волокнистыми структурами эндомизия. Коллагеновые и ретикулярные волокна концевых отделов мышечных волокон вместе с волокнистыми структурами эндомизия и перимизия в совокупности образуют сухожилия мышц, которые прикрепляются к определенным точкам скелета или вплетаются в сетчатый слой дермы кожи в области лица. Благодаря сокращению мышц происходит перемещение частей или всего организма, а также изменение рельефа лица.

Не все мышечные волокна одинаковы по своему строению. Различают два основных типа мышечных волокон, между которыми имеется промежуточные, отличающиеся между собой прежде всего особенностями обменных процессов и функциональными свойствами и в меньшей степени – структурными особенностями.

Волокна I типа – красные мышечные волокна, характеризуются прежде всего высоким содержанием в саркоплазме миоглобина (что придает им красный цвет), большим количеством саркосом, высокой активностью в них фермента сукцинатдегидрогеназы, высокой активностью АТФ-азы медленного действия. Эти волокна обладают способностью медленного, но длительного тонического сокращения и малой утомляемостью.

Волокна II типа – белые мышечные волокна, характеризуются незначительным содержанием миоглобина, но высоким содержанием гликогена, высокой активностью фосфорилазы и АТФ-азы быстрого типа. Функционально волокна данного типа характеризуются способностью более быстрого, сильного, но менее продолжительного сокращения.

Между двумя крайними типами мышечных волокон находятся промежуточные, характеризующиеся различным сочетанием названных включений и разной активностью перечисленных ферментов.

Любая мышца содержит все типы мышечных волокон в различном их количественном соотношении. В мышцах, обеспечивающих поддержание позы, преобладают красные мышечные волокна, в мышцах, обеспечивающих движение пальцев и кистей, преобладают красные и переходные волокна. Характер мышечного волокна может меняться в зависимости от функциональной нагрузки и тренировки. Установлено, что биохимические, структурные и функциональные особенности мышечного волокна зависят от иннервации.

Перекрестная пересадка эфферентных нервных волокон и их окончаний с красного волокна на белое (и наоборот) приводит к изменению обмена, а также структурных и функциональных особенностей в этих волокнах на противоположный тип.

Строение и физиология мышцы

Мышца как орган состоит из мышечных волокон, волокнистой соединительной ткани, сосудов, нервов. Мышца – это анатомическое образование, основным и функционально ведущим структурным компонентом которого является мышечная ткань.

Волокнистая соединительная ткань образует прослойки в мышце: эндомизий, перимизий, эпимизий, а также сухожилия.

Эндомизий окружает каждое мышечное волокно, состоит из рыхлой волокнистой соединительной ткани и содержит кровеносные и лимфатические сосуды, в основном капилляры, посредством которых обеспечивается трофика волокна.

Перимизий окружает несколько мышечных волокон, собранных в пучки.

Эпимизий (или фасция) окружает всю мышцу, способствует функционированию мышцы как органа.

Гистогенез скелетной поперечно-полосатой мышечной ткани

Из миотомов мезодермы в определенные участки мезенхимы выселяются малодифференцированные клетки – миобласты. В области контактов миобластов цитолемма исчезает, и образуется симпластическое образование – миотрубка, в которой ядра в виде цепочки располагаются в середине, а по периферии из миофиламентов начинают дифференцироваться миофибриллы.

К миотрубке подрастают нервные волокна, образуя двигательные нервные окончания. Под влиянием эфферентной нервной иннервации начинается перестройка мышечной трубки в мышечное волокно: ядра перемещаются на периферию симпласта к плазмолемме, а миофибриллы занимают центральную часть. Из складок эндоплазматической сети развивается саркоплазматическая сеть, окружающая каждую миофибриллу на всем ее протяжении. Плазмолемма миосимпласта образует глубокие трубчатые выпячивания – Т-канальца. За счет деятельности зернистой эндоплазматической сети вначале миобластов, а затем и мышечных труб синтезируются и выделяются с помощью пластинчатого комплекса белки и полисахариды, из которых формируется базальная пластинка мышечного волокна.

При формировании миотрубки, а затем и дифференцировки мышечного волокна часть миобластов не входит в состав симпласта, а прилежит к нему, располагаясь под базальной пластинкой. Эти клетки носят название миосателлитов и играют важную роль в процессе физиологической и репаративной регенерации. Установлено, что закладка поперечно-полосатой скелетной мускулатуры происходит только в эмбриональном периоде. В постнатальном периоде осуществляется их дальнейшая дифференцировка и гипертрофия, но количество мышечных волокон даже в условиях интенсивных тренировок не увеличивается.

Регенерация скелетной мышечной ткани

В мышечной, как и в других тканях, различают два вида регенерации физиологическую и репаративную. Физиологическая регенерация проявляется в форме гипертрофии мышечных волокон.

Это выражается в увеличении их толщины и длины, нарастании числа органелл, главным образом миофибрилл, числа ядер, что проявляется усилением функциональной способности мышечного волокна. Радиоизотопными методами установлено, что увеличение содержания ядер в мышечных волокон достигается путем деления клеток миосателлитов и последующего вхождения в миосимпласт дочерних клеток.

Увеличение числа миофибрилл осуществляется с помощью синтеза актиновых и миозиновых белков свободными рибосомами и последующей сборки этих белков в актиновые и миозиновые миофиламенты параллельно с соответствующими филаментами саркомеров. В результате этого вначале происходит утолщение миофибрилл, а затем их расщепление и образование дочерних. Возможно образование новых актиновых и миозиновых миофиламентов не параллельно, а встык уже существующим, чем достигается их удлинение.

Саркоплазматическая сеть и Т-канальца в гипертрофирующемся мышечном волокне образуются за счет разрастания предыдущих элементов. При определенных видах мышечной тренировки может формироваться преимущественно красный тип мышечных волокон (у стайеров в легкой атлетике) или белый тип.

Возрастная гипертрофия мышечных волокон интенсивно проявляется с началом двигательной активности организма (1 – 2 года), что обусловлено прежде всего усилением нервной стимуляции. В старческом возраст, а также в условиях незначительной мышечной нагрузки, наступает атрофия специальных и общих органелл, истончение мышечных волокон и снижение их работоспособности.

Репаративная регенерация развивается после повреждения мышечных волокон.

При этом способе регенерация зависит от величины дефекта. При значительном повреждении на протяжении мышечного волокна миосателлиты в области повреждения и в прилегающих участках растормаживаются, усиленно пролиферируют, а затем мигрируют в область дефекта мышечного волокна, где встраиваются в цепочки, формируя микротрубочку.

Последующая дифференцировка микротрубочки приводит к восполнению дефекта и восстановлению целостности мышечного волокна. В условиях небольшого дефекта мышечного волокна на его концах за счет регенерации внутриклеточных органелл, образуются мышечные почки, которые растут друг навстречу другу, а затем сливаются, приводя к закрытию дефекта.

Репаративная регенерация и восстановление целостности мышечных волокон могут осуществляться только при определенных условиях: если сохранилась двигательная иннервация мышечных волокон и если в область повреждения не попали элементы соединительной ткани (фибробласты). В противном случае на месте дефекта образуется соединительно-тканный рубец.

В настоящее время доказана возможность аутотрансплантации мышечной ткани, в том числе и целых мышц при соблюдении следующих условий:

1) механического измельчения мышечной ткани трансплантанта с целью растормаживания клеток-сателлитов для последующей их пролиферации;

2) помещения измельченной ткани в фасциальное ложе;

3) подшивания двигательного нервного волокна к измельченному трансплантанту;

4) наличия сократительных движений мышц-антагонистов и синергистов.

Иннервация скелетных мышц

Скелетные мышцы получают двигательную, чувствительную и трофическую (вегетативную) иннервацию. Двигательную (эфферентную) иннервацию скелетные мышцы туловища и конечностей получают от мотонейронов передних рогов спинного мозга, а мышцы лица и головы – от двигательных нейронов определенных черепных нервов.

При этом к каждому мышечному волокну подходит либо сам аксон мотонейрона, либо его ответвление. В мышцах, обеспечивающих координированные движения (мышцы кистей, предплечья, шеи) каждое мышечное волокно иннервируется одним мотонейроном, чем достигается большая точность движений. В мышцах, которые преимущественно обеспечивают поддержание позы, десятки и даже сотни мышечных волокон получают двигательную иннервацию от одного мотонейрона посредством разветвления его аксона.

Двигательное нервное волокно, подойдя к мышечному волокну, проникает под эндомизий и базальную пластинку и распадается на терминали, которые вместе с прилежащим специфическим участком миосимпласта образуют аксономышечный синапс (или моторную бляшку).

Под влиянием нервного импульса волна деполяризации распространяется далее по Т-канальцам и в области триад передается на терминальные цистерны саркоплазматической сети, обуславливая выход ионов кальция и начало процесса сокращения мышечного волокна.

Чувствительная иннервация скелетных мышц осуществляется псевдоуниполярными нейронами спинальных ганглиев посредством разнообразных рецепторных окончаний дендритов этих клеток. Рецепторные окончания скелетных мышц можно разделить на две группы:

1) специфические рецепторные приборы, характерные только для скелетной мускулатуры – мышечные веретена и сухожильный комплекс Гольджи;

2) неспецифические рецепторные окончания кустиковидной или древовидной формы, распределяющиеся в рыхлой соединительной ткани эндо-, пери– и эпиневрия.

Мышечные веретена – это сложно устроенные инкапсулированные образования. В каждой мышце содержится от нескольких до сотен мышечных веретен. Каждое мышечное веретено содержит не только нервные элементы, но также 10 – 12 специфических мышечных волокон – интрафузальных, окруженных капсулой. Эти волокна располагаются параллельно сократительным мышечным волокнам (экстрафузально) и получают не только чувствительную, но и специальную двигательную иннервацию. Мышечные веретена воспринимают раздражения как при растяжении данной мышцы, вызванном сокращением мышц-антагонистов, так и при ее сокращении и тем самым регулируют степень сокращения и расслабления.

Сухожильные органы представляют собой специализированные инкапсулированные рецепторы, включающие в свою структуру несколько сухожильных волокон, окруженных капсулой, среди которых распределяются терминальные ветвления дендрита псевдоуниполярного нейрона. При сокращении мышцы сухожильные волокна сближаются и сдавливают нервные окончания. Сухожильные органы воспринимают только степень сокращения данной мышцы. Посредством мышечных веретен и сухожильных органов при участии спинальных центров обеспечивается автоматизм движения, например, при ходьбе.

Трофическая иннервация скелетных мышц осуществляется вегетативной нервной системой – ее вегетативной частью и в основном осуществляется опосредованно через иннервацию сосудов.

Кровоснабжение

Скелетные мышцы богато кровоснабжаются. В рыхлой соединительной ткани (перимизии) в большом количестве содержатся артерии и вены, артериолы, венулы и артериоловенулярные анастомозы.

В эндомизии располагаются капилляры, преимущественно узкие (4,5 – 7 мкм), которые и обеспечивают трофику нервного волокна. Мышечное волокно вместе с окружающими его капиллярами и двигательными окончаниями составляют мион. В мышцах содержится большое количество артериовенулярных анастомозов, обеспечивающих адекватное кровоснабжение при различной мышечной активности.

У позвоночных животных и человека различают три разных по строению группы мышц :

  • поперечно-полосатые мышцы скелета;
  • поперечно-полосатая мышца сердца;
  • гладкие мышцы внутренних органов, сосудов и кожи.

Рис. 1. Виды мышц человека

Гладкие мышцы

Из двух видов мышечной ткани (поперечно-полосатой и гладкой) гладкая мышечная ткань находится на более низкой ступени развития и присуща низшим животным.

Образуют мышечный слой стенок желудка, кишечника, мочеточников, бронхов, кровеносных сосудов и других полых органов. Они состоят из веретенообразных мышечных волокон и не имеют поперечной исчерченности, так как миофибриллы в них расположены менее упорядоченно. В гладких мышцах отдельные клетки соединяются между собой специальными участками наружных мембран - нексусами . За счет этих контактов потенциалы действия распространяются с одного мышечного волокна на другое. Поэтому в реакцию возбуждения быстро вовлекается вся мышца.

Гладкие мышцы осуществляют движения внутренних органов, кровеносных и лимфатических сосудов. В стенках внутренних органов они, как правило, располагаются в виде двух слоев: внутреннего кольцевого и наружного продольного. В стенках артерии они формируют спиралевидные структуры.

Характерной особенностью гладких мышц является их способность к спонтанной автоматической деятельности (мышцы желудка, кишечника, желчного пузыря, мочеточников). Это свойство регулируется нервными окончаниями. Гладкие мышцы пластичны, т.е. способны сохранять приданную растяжением длину без изменения напряжения. Скелетная мышца, наоборот, обладает малой пластичностью и эту разницу легко установить в следующем опыте: если растянуть с помощью грузов и гладкую и поперечно-полосатую мышцы и снять груз, то скелетная мышца сразу же после этого укорачивается до первоначальной длины, а гладкая мышца долгое время может находиться в растянутом состоянии.

Такое свойство гладких мышц имеет большое значение для функционирования внутренних органов. Именно пластичность гладких мышц обеспечивает лишь небольшое изменение давления внутри мочевого пузыря при его наполнении.

Рис. 2. А. Волокно скелетной мышцы, клетка сердечной мышцы, гладкая мышечная клетка. Б. Саркомер скелетной мышцы. В. Строение гладкой мышцы. Г. Механограмма скелетной мышцы и мышцы сердца.

Гладким мышцам присущи те же основные свойства, что и поперечнополосатым скелетным мышцам, но и некоторые особые свойства:

  • автоматия, т.е. способность сокращаться и расслабляться без внешних раздражений, а за счет возбуждений, возникающих в них самих;
  • высокая чувствительность к химическим раздражителям;
  • выраженная пластичность;
  • сокращение в ответ на быстрое растяжение.

Сокращение и расслабление гладких мышц происходит медленно. Это способствует наступлению перестальтических и маятникообразных движений органов пищеварительного тракта, что приводит к перемещению пищевого комка. Длительное сокращение гладких мышц необходимо в сфинктерах полых органов и препятствует выходу содержимого: желчи в желчном пузыре, мочи в мочевом пузыре. Сокращение гладкомышечных волокон совершается независимо от нашего желания, под воздействием внутренних, не подчиненных сознанию причин.

Поперечно-полосатые мышцы

Поперечно-полосатые мышцы располагаются на костях скелета и сокращением приводят в движение отдельные суставы и все тело. образуют тело, или сому, поэтому их еще называют соматическими, а иннервирующую их систему — соматической нервной системой.

Благодаря деятельности скелетной мускулатуры осуществляется передвижение тела в пространстве, разнообразная работа конечностей, расширение грудной клетки при дыхании, движение головы и позвоночника, жевание, мимика лица. Насчитывается более 400 мышц. Общая масса мышц составляет 40% веса. Обычно средняя часть мышцы состоит из мышечной ткани и образует брюшко. Концы мышц — сухожилия построены из плотной соединительной ткани; они соединяются с костями при помощи надкостницы, но могут прикрепляться и к другой мышце, и к соединительному слою кожи. В мышце мышечные и сухожильные волокна объединяются в пучки при помощи рыхлой соединительной ткани. Между пучками располагаются нервы и кровеносные сосуды. пропорциональна количеству волокон, составляющих брюшко мышцы.

Рис. 3. Функции мышечной ткани

Некоторые мышцы проходят только через один сустав и при сокращении приводят его в движение — односуставные мышцы. Другие мышцы проходят через два или несколько суставов — многосуставные, они производят движение в нескольких суставах.

При концы мышцы, прикрепленные к костям, приближаются друг к другу, а размеры мышцы (длина) уменьшается. Кости, соединенные суставами, действуют как рычаги.

Изменяя положение костных рычагов, мышцы действуют на суставы. При этом каждая мышца влияет на сустав только в одном направлении. У одноосного сустава (цилиндрический, блоковидный) имеются две действующие на него мышцы или группы мышц, являющиеся антагонистами: одна мышца — сгибатель, другая — разгибатель. В то же время на каждый сустав в одном направлении действует, как правило, две мышцы и более, являющиеся синергистами (синергизм — совместное действие).

У двуосного сустава (эллипсоидный, мышелковый, седловидный) мышцы группируются соответственно двум его осям, вокруг которых совершаются движения. К шаровидному суставу, имеющему три оси движения (многоосный сустав), мышцы прилежат со всех сторон. Так, например, в плечевом суставе имеются мышцы-сгибатели и разгибатели (движения вокруг фронтальной оси), отводящие и приводящие (сагиттальная ось) и вращатели вокруг продольной оси, кнутри и кнаружи. Различают три вида работы мышц: преодолевающую, уступающую и удерживающую.

Если благодаря сокращению мышцы меняется положение части тела, то преодолевается сила сопротивления, т.е. выполняется преодолевающая работа. Работа, при которой сила мышцы уступает действию силы тяжести и удерживаемого груза, называется уступающей. В этом случае мышца функционирует, однако она не укорачивается, а удлиняется, например, когда невозможно поднять или удержать на весу тело, имеющее большую массу. При большом усилии мышц приходится опустить это тело на какую-нибудь поверхность.

Удерживающая работа выполняется благодаря сокращению мышц, тело или груз удерживается в определенном положении без перемещения в пространстве, например человек держит груз, не двигаясь. При этом мышцы сокращаются без изменения длины. Сила сокращения мышц уравновешивает массу тела и груза.

Когда мышца, сокращаясь, перемешает тело или его части в пространстве, они выполняют преодолевающую или уступающую работу, которая является динамической. Статистической является удерживающая работа, при которой не происходит движений всего тела или его части. Режим, при котором мышца может свободно укорачиваться, называется изотоническим (не происходит изменения напряжения мышцы и меняется только ее длина). Режим, при котором мышца не может укоротиться, называется изометрическим — меняется только напряжение мышечных волокон.

Рис. 4. Мышцы человека

Строение поперечно-полосатых мышц

Скелетные мышцы состоят из большого числа мышечных волокон, которые объединяются в мышечные пучки.

В одном пучке содержится 20-60 волокон. Мышечные волокна представляют собой клетки цилиндрической формы длиной 10-12 см и диаметром 10-100 мкм.

Каждое мышечное волокно имеет оболочку (сарколемму) и цитоплазму (саркоплазму). В саркоплазме находятся все компоненты животной клетки и вдоль оси мышечного волокна располагаются тонкие нити - миофибриллы, Каждая миофибрилла состоит из протофибрилл, в состав которых вкючены нити белков миозина и актина, являющихся сократительным аппаратом мышечного волокна. Миофибриллы разделены между собой перегородками, которые называются Z-мембранами, на участки - саркомеры. На обоих концах саркомеров к Z-мембране прикреплены тонкие актиновые нити, а в середине расположены толстые миозиновые нити. Нити актина своими концами частично входят между миозиновыми нитями. В световом микроскопе нити миозина выглядят в виде светлой полоски в темном диске. При электронной микроскопии скелетные мышцы выглядят исчерченными (поперечно-полосатыми).

Рис. 5. Поперечные мостики: Ак — актин; Мз — миозин; Гл — головка; Ш — шейка

На боковых сторонах миозиновой нити имеются выступы, получившие название поперечных мостиков (рис. 5), которые расположены под углом 120° по отношению к оси миозиновой нити. Актиновые филаменты выглядят в виде двойной нити, закрученной в двойную спираль. В продольных бороздках актиновой спирали находятся нити белка тропомиозина, к которым присоединен белок тропонин. В состоянии покоя молекулы белка тропомиозина расположены таким образом, чтобы предотвращать прикрепление поперечных мостиков миозина к актиновым нитям.

Рис. 6. А — организация цилиндрических волокон в скелетной мышце, прикрепленной к костям сухожилиями. Б — структурная организация филаментов в волокне скелетной мышцы, создающая картину поперечных полос.

Рис. 7. Строение актина и миозина

Во многих местах поверхностная мембрана углубляется в виде микротрубок внутрь волокна, перпендикулярно его продольной оси, образуя систему поперечных трубочек (Т-система). Параллельно миофибриллам и перпендикулярно поперечным трубочкам между миофибрилл расположена система продольных трубочек (саркоплазматический ретикулум). Концевые расширения этих трубочек - терминальные цистерны - подходят очень близко к поперечным трубочкам, образуя совместно с ними так называемые триады. В цистернах сосредоточено основное количество внутриклеточного кальция.

Механизм сокращения скелетной мышцы

Мышечная ткань состоит из клеток, называемых мышечными волокнами. Снаружи волокно окружено оболочкой — сарколеммой. Внутри сарколеммы содержится цитоплазма (саркоплазма), содержащая ядра и митохондрии. В ней содержится огромное количество сократительных элементов, называемых миофибриллами. Миофибриллы проходят от одного конца мышечного волокна до другого. Они существуют сравнительно короткий срок — около 30 суток, после чего и происходит их полная смена. В мышцах идет интенсивный синтез белка, необходимый для образования новых миофибрилл.

Мышечное волокно содержит большое количество ядер, которые располагаются непосредственно под сарколеммой, поскольку основная часть мышечного волокна занята миофибриллами. Именно наличие большого числа ядер обеспечивает синтез новых миофибрилл. Такая быстрая смена миофибрилл обеспечивает высокую надежность физиологических функций мышечной ткани.

Рис. 7. А — схема организации саркоплазматического ретикулума, поперечных трубочек и миофибрилл. Б — схема анатомической структуры поперечных трубочек и саркоплазматического ретикулума в индивидуальном волокне скелетной мышцы. В — роль саркоплазматического ретикулума в механизме сокращения скелетной мышцы

Каждая миофибрилла состоит из правильно чередующихся светлых и темных участков. Эти участки, обладая разными оптическими свойствами, создают поперечную исчерченность мышечной ткани.

В скелетной мышце сокращение вызывается поступлением к ней импульса по нерву. Передача нервного импульса с нерва на мышцу осуществляется через нервно-мышечный синапс (контакт).

Одиночный нервный импульс, или однократное раздражение, приводит к элементарному сократительному акту — одиночному сокращению. Начало сокращения не совпадает с моментом нанесения раздражения, поскольку существует скрытый, или латентный, период (интервал между нанесением раздражения и началом сокращения мышцы). В этот период происходит развитие потенциала действия, активация ферментных процессов и распад АТФ. После этого начинается сокращение. Распад АТФ в мышце приводит к превращению химической энергии в механическую. Энергетические процессы всегда сопровождаются выделением тепла и тепловая энергия обычно является промежуточной между химической и механическими энергиями. В мышце же химическая энергия превращается непосредственно в механическую. Но тепло в мышце образуется и за счет укорочения мышцы, и во время ее расслабления. Тепло, образующееся в мышцах, играет большую роль в поддержании температуры тела.

В отличие от сердечной мышцы, которая обладает свойством автоматики, т.е. она способна сокращаться под влиянием импульсов, возникающих в ней самой, и в отличие от гладкой мускулатуры, также способной к сокращению без поступления сигналов извне, скелетная мышца сокращается только при поступлении к ней сигналов из . Непосредственно сигналы к мышечным волокнам поступают по аксонам двигательных клеток, расположенным в передних рогах серого вещества спинного мозга (мотонейронам).

Рефлекторный характер деятельности мышц и координация мышечных сокращений

Скелетные мышцы в отличие от гладких способны совершать произвольные быстрые сокращения и производить этим значительную работу. Рабочим элементом мышцы является мышечное волокно. Типичное мышечное волокно представляет собой структуры с несколькими ядрами, отодвинутыми на периферию массой сократительных миофибрилл.

Мышечные волокна обладают тремя основными свойствами:

  • возбудимостью — способностью отвечать на действия раздражителя генерацией потенциала действия;
  • проводимостью — способностью проводить волну возбуждения вдоль всего волокна в обе стороны от точки раздражения;
  • сократимостью — способностью сокращаться или изменять напряжение при возбуждении.

В физиологии имеется понятие двигательной единицы, под которой подразумевается один двигательный нейрон и все мышечные волокна, которые этот нейрон иннервирует. Двигательные единицы бывают разными по объему: от 10 мышечных волокон на единицу для мышц, выполняющих точные движения, до 1000 и более волокон на двигательную единицу для мышц «силовой направленности». Характер работы скелетных мышц может быть различным: статическая работа (поддержание позы, удержание груза) и динамическая работа (перемещение тела или груза в пространстве). Мышцы участвуют также в передвижении крови и лимфы в организме, выработке тепла, актах вдоха и выдоха, являются своеобразными депо для воды и солей, защищают внутренние органы, например мышцы брюшной стенки.

Для скелетной мышцы характерны два основных режима сокращения — изометрический и изотонический.

Изометрический режим проявляется в том, что в мышце во время ее активности нарастает напряжение (генерируется сила), но из-за того, что оба конца мышцы фиксированы (например, при попытке поднять очень большой груз), — она не укорачивается.

Изотонический режим проявляется в том, что мышца первоначально развивает напряжение (силу), способное поднять данный груз, а потом мышца укорачивается — меняет свою длину, сохраняя напряжение, равное весу удерживаемого груза. Чисто изометрического или изотонического сокращения практически наблюдать нельзя, но существуют приемы так называемой изометрической гимнастики, когда спортсмен напрягает мышцы без изменения длины. Эти упражнения в большей мере развивают силу мышц, чем упражнения с изотоническими элементами.

Сократительный аппарат скелетной мышцы представлен миофибриллами. Каждая миофибрилла диаметром 1 мкм состоит из нескольких тысяч протофибрилл — тонких, удлиненных полимеризированных молекул белков миозина и актина. Миозиновые нити в два раза тоньше актиновых, и в состоянии покоя мышечного волокна актиновые нити свободными кольцами входят между миозиновыми нитями.

В передаче возбуждения большую роль играют ионы кальция, которые входят в межфибриллярное пространство и запускают механизм сокращения: взаимное втягивание относительно друг друга актиновых и миозиновых нитей. Втягивание нитей происходит при обязательном участии АТФ. В активных центрах, расположенных на одном из концов миозиновых нитей, АТФ расщепляется. Энергия, выделяемая при расщеплении АТФ, преобразуется в движение. В скелетных мышцах запас АТФ невелик — всего на 10 одиночных сокращений. Поэтому необходим постоянный ре- синтез АТФ, который идет тремя путями: первый — за счет запасов креатинфосфата, которые ограничены; второй — гликолитический путь при анаэробном расщеплении глюкозы, когда на одну молекулу глюкозы образуется две молекулы АТФ, но одновременно образуется молочная кислота, которая тормозит активность гликолитических ферментов, и наконец третий — аэробное окисление глюкозы и жирных кислот в цикле Кребса, совершающееся в митохондриях и образующее 38 молекул АТФ на 1 молекулу глюкозы. Последний процесс наиболее экономичный, но очень медленный. Постоянная тренировка активизирует третий путь окисления, в результате чего повышается выносливость мышц к длительным нагрузкам.

Поперечнополосатая скелетная мышечная ткань образует мышцы головы, туловища, конечностей, глотки, гортани, жевательных мышц, языка, краниального отдела пищевода. Иннервация за счет соматической нервной системы позволяет животному совершать произвольные сокращения скелетной мускулатурой тела. Структурно-функциональная единица скелетной мышечной ткани - мышечное волокно (мион), развивается из миотомов сегментированного отдела (сомитов) мезодермы. Гистогенез мышечных волокон: миобластическая, миосимпластическая, мышечных трубочек, дефинитивных мышечных волокон (рис. 42).

Миобластическая стадия характеризуется тем, что на ранней стадии развития миотомы состоят из плотно расположенных эпителио- подобных мышечных клеток, имеющих крупные ядра и тонковолокнистую структуру цитоплазмы. Эпителиоподобные мышечные клетки дифференцируются в промиобласты, а затем в миобласты, которые активно делятся и перемещаются как единое целое потоками в участки расположения будущих мышц. Одна часть миоблас- тов не участвует в образовании мышечных волокон и дифференцируется в сателлиты - камбиальные клетки, которые располагаются между базальной мембраной и сарколеммой. Определяющим моментом перехода к миосимпластической стадии является так называемый дифференциальный митоз, т.е. блокируется репродукция миоблас- тов, приобретающих способность к слиянию в симпласты, за счет деления ядер без разделения цитоплазмы. Поэтому наблюдается образование многоядерных структур, в общей массе цитоплазмы имеются единичные сократительные нити - миофибриллы, которых

Рис. 42

а - миобластическая стадия; 6 - миосимпластическая стадия; в - стадия мышечных трубочек; г - стадия формирования дефинитивных мышечных волокон;

7 - эпителиоподобные клетки миотома;2 - промиобласты; 3 - миобласты; 4 - митоз; 5 - слияние миобластов и начало синтеза миофибрилл; б - образование миосимпласта

становится все больше. Стадия мышечных трубочек характеризуется тем, что многоядерные структуры приобретают удлиненную трубчатую форму, в центральной части которых в ряд располагаются многочисленные ядра, на периферии дифференцируются миофибриллы. После того как большая часть мышечных трубочек заполняется ми- офибриллами, устанавливаются нейромышечные контакты. Формирование дефинитивных мышечных волокон сопровождается резким увеличением числа миофибрилл, занимающих центральное положение, тогда как многочисленные ядра перемещаются на периферию и располагаются под плазмолеммой.

В постнатальный период рост мышц обусловлен не увеличением числа, а утолщением волокон, т.е. миофиламенты строятся на поверхности уже имеющихся миофибрилл. Мышечные волокна растут в длину за счет пристройки новых саркомеров, при повреждении регенерируют за счет камбиальных клеток - сателлитов, способных дифференцироваться в миобласты и далее, как это происходит в эмбриогенезе.

Структурно-функциональная организация мышечного волокна. Мышечное волокно имеет вид длинного тонкого цилиндра, длина которого может достигать 13-15 см, диаметр 10-150 мкм. Снаружи волокно окружено оболочкой - сарколеммой (от греч. sarcos - мясо; lemma - оболочка), состоящей из двух слоев, образованных мембранами. Наружная (базальная) и внутренняя (плазматическая) мембраны разделены пространством в 10-25 нм. Базальная мембрана , расположенная между рыхлой волокнистой соединительной тканью и мышечным волокном, играет роль посредника и служит местом прикрепления коллагеновых и эластических волокон. Плазматическая мембрана (плазмолемма) мышечного волокна непосредственно ограничивает содержимое саркоплазмы, выполняет функцию барьера, обеспечивающего избирательный обмен веществ между мышечным волокном и окружающей средой. Цитоплазма мышечного волокна называется саркоплазмой. Между структурами волокна расположено основное вещество саркоплазмы - саркоплазматический матрикс, состоящий из глобулярных белков и пигментного белка - миоглобина, способного связывать кислород. В саркоплазме многочисленные ядра располагаются непосредственно под сарколеммой, размер и форма ядер зависят от степени сокращения мышечного волокна. Между миофибриллами находится множество митохондрий - саркосом. Цитоплазма - саркоплазма мышечного волокна содержит сеть внутренних мембран - саркоплазматический ретикулум. Поперек волокна, между миофибриллами проходит система трубочек - Т-система, связанная с сарколеммой. Комплекс из одной Г-трубочки, саркоплазматической сети и терминальных цистерн называется триадой. Триада участвует в продвижении волн деполяризации, аккумуляции и высвобождения ионов кальция. В результате концентрация этих ионов в саркоплазме снижается или повышается, что, в свою очередь, влияет на активность АТФ-азы, следовательно, на сократительную функцию мышечного волокна.

Сократительный аппарат представляет собой продольно ориентированные белковые сократительные нити - миофибриллы, имеющие исчерченную структуру из-за наличия чередующихся светлых и темных дисков. Эти диски различно преломляют поляризованный свет: светлые, изотропные 1-диски обладают одинарным; а темные, анизотропные A-диски - двойным лучепреломлением. В темных дисках находятся толстые миозиновые нити, содержащие светлую Я-зону, в середине которой проходит М-линия. Светлые диски содержат тонкие актиновые нити, которые посредине пересекает Z-ли- ния. Участок миофибриллы между Z-линиями - саркомер, следовательно, каждый саркомер содержит один Л-диск и две половинки I- диска. Саркомер является структурно-функциональной единицей миофибриллы, один конец тонкой (актиновой) нити прикреплен к

Z-линии, а другой направлен к середине саркомера, т.е. тонкие нити проходят между толстыми нитями (рис. 43).


Рис. 43

  • 1 - ядро; 2 - миофибриллы; 3 - саркоплазма; 4 - саркомер; 5 - сухожилие;
  • 6 - оболочка волокна; А - анизотропный диск; J - изотропный диск; Z - темная полоска; Н - светлая полоска

Структура мышечных волокон в составе мяса и мясных изделий.

Мышечные волокна в составе мяса имеют гофрированную и складчатую форму. Характер складчатости зависит от степени сокращения: гофрированные волокна имеют слабое сокращение или расслаблены, а расположенные рядом с ними прямые волокна сильно сокращены. Степень сокращения мышечных волокон определяют по наличию узлов сокращения, представляющих собой характерную структуру, возникающую в поперечнополосатых мышечных волокнах всех видов сельскохозяйственных животных. Узлы сокращения характеризуются сильной степенью сокращения миофибрилл; степень их сокращения по длине узла часто распределяется закономерно: наивысшая степень сокращения - в области, расположенной ближе к центру узла.

В морфологическом отношении мясо представляет собой тканевый комплекс, в состав которого входят мышечная, соединительная (рыхлая волокнистая, жировая, костная) ткани, кровеносные и лимфатические сосуды, нервные волокна и нервные окончания. После убоя животного с прекращением обмена веществ основным биохимическим процессом при переработке сырья является автолиз (от греч. autos - сам, lisis - растворение), основу которого составляют ферментативные процессы. Совокупность изменений важнейших свойств, обусловленных развитием автолиза, в результате которых мясо приобретает нежную консистенцию и сочность, хорошо выраженный специфический запах и вкус обусловливает созревание мяса. Парное мясо - исходная структура, с которой можно сравнивать все последующие изменения в мясе. Мышечные волокна парного мяса, как уже упоминалось, имеют гофрированную и складчатую форму;

степень сокращения мышечных волокон можно определять по наличию узлов сокращения, и наивысшая степень сокращения наблюдается в области, расположенной ближе к центру узла. Эта масса в центре узлов обычно становится местом разобщения волокна на отдельные фрагменты, количество которых увеличивается, если по длине узлы сокращения довольно большие. В охлажденном мясе складчатость мышечных волокон почти полностью исчезает, а при замораживании мяса изменения характеризуются появлением нового структурного компонента - водных кристаллов - и изменением общего вида и толщины мышечных волокон. Кристаллы в мясе образуются за счет переноса кристаллизующейся жидкости из тканевого сока. Энергичные процессы кристаллизации являются причиной рыхлого и хаотического расположения мышечных волокон, их фрагментации и деформации.

Препарат «Поперечнополосатые мышцы языка кролика» (окраска железным гематоксилином и смесью Маллори). На гистологических препаратах выявляются поперечнополосатые волокна, ограниченные оболочкой. При слабом увеличении микроскопа (х10) выявляются волокна в продольном, поперечном и косом сечении. Элементы рыхлой волокнистой соединительной ткани, расположенные снаружи от базальной мембраны, образуют прослойки - эндомизий, окружающие отдельные мышечные волокна, объединяя их в первичные пучки, что способствует интеграции усилий при сокращении. Выявляются также более крупные прослойки рыхлой волокнистой неоформленной соединительной ткани - перимизий, окружающие мышечные пучки различной величины. В составе рыхлой волокнистой неоформленной соединительной ткани выявляются коллагеновые и эластические волокна, скопления жировых клеток, кровеносные сосуды, нервные волокна (рис. 44).


Рис. 44

  • 7 - мышечные волокна в продольном и поперечном сечении; 2,3 - прослойки рыхлой волокнистой неоформленной соединительной ткани; 4 - жировые клетки;
  • 5 - кровеносные сосуды

Препарат «Микроскопическая структура говядины» (окраска железным гематоксилином). На препарате при слабом увеличении микроскопа (х10) выявляются мышечные волокна в продольном и поперечном сечении. Между мышечными волокнами проходят очень тонкие прослойки рыхлой волокнистой соединительной ткани - эндомизий. Несколько волокон объединены в мышечные пучки различной величины, между этими пучками выявляются прослойки рыхлой волокнистой соединительной ткани - перимизий. Эндомизий и перимизий состоят из коллагеновых волокон различной прочности, образующих более или менее сложные сплетения, и содержащих различное количество эластических волокон (рис. 45).

Препарат «Микроструктура мяса индейки» (окраска железным гематоксилином). На гистологических препаратах выявляются поперечнополосатые волокна, ограниченные оболочкой. При слабом увеличении микроскопа (х10) выявляются волокна в продольном, поперечном сечении. В продольном сечении волокна имеют вид цилиндров, а в поперечном сечении - округлую или овальную форму. Важным дифференциальным признаком, отличающим мышцы птицы от мышц млекопитающих, является расположение ядер в мышечном волокне: у птиц ядра расположены в центральной части, а у млекопитающих - по периферии волокна (рис. 46).


Рис. 45 . Микроструктура говядины: а - продольный срез мышечных волокон парного мяса; б, в - продольный и поперечный срезы мышечных волокон замороженного мяса (окраска гематоксилином;

ок. х7; об. х40)


Рис. 46

ок. х7; об. х40)

Препарат «Поперечнополосатые мышцы карпа» (окраска железным гематоксилином). При слабом увеличении микроскопа (х10) выявляются поперечнополосатые волокна, объединенные в сегменты - миотомы, которые разделены соединительнотканными перегородками - миосептами (рис. 47, а). В продольном сечении волокна имеют вид цилиндров, ядра расположены по всей толще мышечного волокна. Элементы рыхлой волокнистой соединительной ткани окружают как отдельные мышечные волокна, так и пучки мышечных волокон. В составе соединительной ткани выявляются коллагеновые и эластические волокна, скопления жировых клеток, кровеносные сосуды, нервные волокна.

Препарат «Поперечнополосатые мышцы лягушки» (окраска железным гематоксилином). При слабом увеличении микроскопа (х 10) выявляются поперечнополосатые волокна, с центрально расположенными ядрами (рис. 47, б). Отличительная особенность от преды-


Рис. 47 а - карпа; б - лягушки; (окраска гематоксилином и эозином; ок. х7; об. х40) дущих препаратов: волокна очень плотно прилегают друг к другу, между ними мало элементов рыхлой волокнистой соединительной ткани.

Препарат «Поперечнополосатая мышечная ткань при контаминации бактериями». При контаминации мяса бактериями наблюдается так называемая бактериальная порча. В результате развития микроорганизмов происходит распад белка с образованием продуктов гидролиза, оказывающих существенное влияние на органолептические показатели и пищевую ценность мяса. Микроорганизмы, развивающиеся в кислой среде, сдвигают pH в щелочную сторону, подготавливают условия для жизнедеятельности других микроорганизмов. Скорость порчи зависит от температуры и влажности окружающей среды, состояния «корочки подсыхания» и вида бактерий. Как правило, бактериальная порча начинается на поверхности, а затем проникает в толщу мяса. На гистологических препаратах диффузно расположенные бактерии выявляются на поверхности мышечных волокон в прослойках рыхлой волокнистой соединительной ткани (рис. 48).

В изделиях из мяса подмену мяса убойных животных мясом других позвоночных животных выявляют по положению ядер в мышечном волокне: у амфибий, рыб, птиц ядра расположены в центральной части, тогда как у млекопитающих - по периферии волокна. При использовании мясной обрези, мяса голов, губ, ушей обнаруживаются слюнные железы, фрагменты хрящей, многослойный плоский эпителий слизистой оболочки ротовой полости. Мясные консервы также могут содержать значительное количество соединительной ткани, добавки растительных белков и крахмала, мышечная ткань может заменяться субпродуктами. Для увеличения


Рис. 48 . Микроструктура говядины при контаминации бактериями: а - микроорганизмы на поверхности мышечных волокон; б - микроорганизмы в прослойках рыхлой волокнистой соединительной ткани объемов производства, рационального использования сырья, стабилизации качества колбасных изделий наряду с традиционным сырьем широко используются субпродукты, растительные белки и другие компоненты растительного и животного происхождения. Например, соевый белок имеет вид крупных фрагментов с плотной волокнистой структурой, окрашивающейся кислыми красителями. Клетки растительной ткани крупные, четко очерченные, имеют целлюлозную оболочку и слабо воспринимают гистологические красители.

Препарат «Колбаса вареная» (окраска гематоксилином и эозином). При микроскопии выявляются мелкозернистая масса аморфного более светлого вещества; отдельные фрагменты мышечных волокон; капли жирового вещества из разрушенных жировых клеток, при использовании порошкообразных пряностей обнаруживаются отдельные фрагменты или группы клеток. В аморфном веществе встречаются довольно крупные вакуоли (пустоты овальной и округлой формы) - участки, где были воздушные пузырьки, возникающие в процессе технологической обработки. Технологические процессы (измельчение, посол, варка) отражаются на степени деструкции мышечных волокон, распределении зернистой массы, размере и формы вакуолей и распределении жировой фракции, наличие микроорганизмов (рис. 49).

Рис. 49 а - контроль: 1 - оболочка; 2 - фрагменты мышечных волокон; 3 - вакуоли;

4 - жировые клетки; б - опыт (контаминация микроорганизмами) (окраска гематоксилином и эозином; ок. х7; об. х40)

Контрольные вопросы

  • 1. Дайте характеристику поперечнополосатой скелетной мышечной ткани.
  • 2. Каковы основные этапы гистогенеза мышечных волокон?
  • 3. Какова структура мышечных волокон?
  • 4. Какую структуру имеют миофибриллы?
  • 5. Охарактеризуйте изменения мышечной ткани в процессе технологической обработки.
  • 6. Дайте характеристику микроструктуре мяса и мясных изделий.

Образует скелетную мускулатуру человека и животных, предназначенную для выполнения различных действий: движения тела, сокращения голосовых связок, дыхания. Мышцы состоят на 70-75 % из воды.

Энциклопедичный YouTube

    1 / 3

    Строение мышечной клетки

    Строение скелетных поперечнополосатых мышц

    Сокращение мышечных волокон

    Субтитры

    Мы рассмотрели механизм сокращения мышц на молекулярном уровне. А теперь давайте поговорим о строении самой мышцы и о том, как она связана с окружающими тканями. Я нарисую бицепс. Вот так… Сокращающийся бицепс… Вот локоть, вот - кисть. Вот такой у человека бицепс при сокращении. Наверное, вы все видели рисунки с изображением мышц, по крайней мере схематические, мышца крепится к костям с обеих сторон. Обозначу кости. Схематично… Мышца с обеих сторон прикрепляется к кости с помощью сухожилий. Вот здесь у нас кость. И вот здесь тоже. А белым цветом я обозначу сухожилия. Они прикрепляют мышцы к костям. А это сухожилие. Мышца крепится к двум костям; при сокращении она перемещает часть скелетной системы. Сегодня мы говорим о скелетных мышцах. Скелетных… К другим типам относятся гладкие мышцы и сердечные мышцы. Сердечные мышцы, как вы понимаете, - в нашем сердце; а гладкие мышцы сокращаются непроизвольно и медленно, они образуют, например, пищеварительный тракт. Я подготовлю о них ролик. Но в большинстве случаев под словом «мышцы» подразумеваются скелетные мышцы, которые перемещают кости и дают возможность ходить, разговаривать, жевать и тому подобное. Давайте рассмотрим такие мышцы подробнее. Если посмотреть на мышцу бицепса в поперечном разрезе… поперечный разрез мышцы… Я сделаю рисунок побольше. Нарисуем бицепс… Нет, пусть это будет просто абстрактная мышца. Рассмотрим ее в поперечном разрезе. Сейчас узнаем, что у мышцы внутри. Мышца переходит в сухожилие. Вот здесь сухожилие. И у мышцы есть оболочка. Четкой границы между оболочкой и сухожилием нет; оболочка мышцы называется эпимизий. Это соединительная ткань. Она окружает мышцу, выполняет некоторые защитные функции, уменьшает трение мышцы о кость и другие ткани, в нашем примере - ткани руки. Внутри мышцы тоже есть соединительная ткань. Возьму другой цвет. Оранжевый. Это соединительнотканная оболочка; она окружает пучки мышечных волокон разной толщины. Она называется перимизий, это соединительная ткань внутри мышцы. Перимизий… А каждый из этих пучков окружен перимизием… Если рассматривать его подробней… Вот один такой пучок мышечных волокон, окруженный перимизием… Возьмем вот этот пучок. Он окружен оболочкой, называемой перимизием. Это такое «умное» слово, обозначающее соединительную ткань. Там, конечно, есть и другие ткани - нервные волокна, капилляры, ведь к мышце нужно подводить кровь, нервные импульсы. Так что там помимо соединительной есть и другие ткани, обеспечивающие жизнь мышечных клеток. Каждая из таких групп волокон - а это большие группы волокон мышцы - называется пучок. Это пучок… Пучок. Внутри такого пучка тоже есть соединительная ткань; ее называют эндомизий. Сейчас я его обозначу. Эндомизий. Повторяю: в составе соединительной ткани присутствуют нервные волокна, капилляры - все необходимое для обеспечения контакта с мышечными клетками. Мы рассматриваем строение мышцы. Вот это эндомизий. Зеленым цветом обозначена соединительная ткань, которую называют эндомизий. Эндомизий. А вот такое «волокно», окруженное эндомизием, и есть мышечная клетка. Мышечная клетка. Обозначу другим цветом. Вот такая вытянутая клетка. Я ее немного «вытащу». Мышечная клетка. Заглянем внутрь нее, и посмотрим, как там располагаются миозиновые и актиновые филаменты. Итак, вот мышечная клетка или мышечное волокно. Мышечное волокно… Вам часто будут встречаться два префикса; первый - «мио», произошедший от греческого слова «мышца»; И второй - «сарко», например, в словах «сарколемма», «саркоплазматическая сеть», произошедший от греческого слова «мясо», «плоть». Он сохранился в ряде слов, например, «саркофаг». «Сарко» - плоть, «мио» - мышца. Итак, вот это мышечное волокно. Или мышечная клетка. Давайте рассмотрим ее подробнее. Сейчас я ее нарисую покрупнее. Мышечная клетка, иначе называется мышечное волокно. «Волокно» - потому что в длину она намного больше, чем в ширину; она имеет вытянутую форму. Сейчас я нарисую. Вот такая у меня мышечная клетка… Рассмотрим ее в поперечном разрезе. Мышечное волокно… Они бывают относительно короткие - несколько сот микрометров - и очень длинные, по крайней мере по клеточным меркам. У нас пусть будет несколько сантиметров. Представьте себе такую клетку! Она очень длинная, поэтому в ней несколько ядер. И чтобы обозначить ядра, я подправлю свой рисунок. Добавлю вот такие бугорки на мембране клетки, - под ними как раз и будут ядра. Напомню, это всего одна мышечная клетка; такие клетки очень длинные, поэтому в них несколько ядер. Вот здесь будет поперечный разрез. Как я сказал, в клетке несколько ядер. Представим, что мембрана прозрачная; вот одно ядро, вот - другое, вот здесь - третье, и четвертое. Много ядер нужно для того, чтобы не тратить время на преодоление белка́ми больших расстояний; скажем, от этого ядра до вот этой части клетки. В многоядерной клетке информация ДНК всегда рядом. Если я не ошибаюсь, в одном миллиметре мышечной ткани в среднем тридцать ядер. Не знаю, сколько ядер в нашей клетке, но расположены они непосредственно под мембраной - а вы помните, как она называется, из прошлого занятия. Мембрана мышечной клетки называется сарколемма. Запишем. Сарколемма. Ударение на третий слог. Вот это - ядра. Ядро… А если посмотрим на поперечный разрез, увидим еще более тонкие структуры, их называют миофибриллы. Вот такие нитевидные структуры внутри клетки. Я вытяну одну из них на рисунке. Вот одна из таких «ниточек». Это миофибрилла. Миофибрилла… Если посмотреть на нее в микроскоп, то можно увидеть бороздки. Вот такие бороздки… Здесь, здесь и здесь… И еще пара тонких... Внутри миофибрилл и происходит взаимодействие филаментов миозина и актина. Давайте еще увеличим масштаб. Так и будем увеличивать, пока не дойдем до молекулярного уровня. Итак, миофибрилла; она находится внутри мышечной клетки или мышечного волокна. Мышечное волокно это мышечная клетка. Миофибрилла - это нитевидная структура внутри мышечной клетки. Именно миофибриллы обеспечивают сокращение мышц. Я нарисую миофибриллу в более крупном масштабе. Вот приблизительно так… На ней полоски… Это называется исчерченность. Узкие полоски. Ещё… Есть более широкие полоски. Постараюсь нарисовать как можно аккуратней. Вот здесь еще одна полоска… А затем все повторяется. Каждый из таких повторяющихся участков называется саркомер. Это саркомер. Саркомер… Такие участки находятся между так называемыми Z-линиями. Термины придумывались, когда исследователи впервые увидели эти линии под микроскопом. Мы поговорим о том, как они связаны с миозином и актином совсем скоро. Вот эту зону принято называть Диск А или А-диск. А вот эту зону здесь и здесь - диск I или I-диск. Через пару минут мы узнаем, как они связаны с механизмами, молекулами, о которых мы говорили на прошлом занятии. Если заглянуть внутрь миофибрилл, сделаем ее поперечный разрез, разделим на секции параллельно экрану, в который смотрим, вот что увидим. Так, вот одна Z-линия. Z-линия… Следующая Z-линия. Я рисую один саркомер в крупном масштабе. Соседняя Z-линия. И вот мы переходим на молекулярный уровень, как я и обещал. Вот актиновые филаменты Обозначу их волнистыми линиями. Пусть будет три… Подпишу их… Актиновые филаменты… А между актиновыми филаментами - миозиновые. Нарисую их другим цветом… Помните, на волокнах миозина две головки. На каждом из них по две головки, которые скользят или «ползут» по волокнам актина. Обозначу несколько… Вот здесь они прикреплены... Сейчас мы посмотрим, что происходит, когда мышца сокращается. Нарисуем еще волокна миозина. На самом деле, головок миозина несравнимо больше, но у нас схематический рисунок. Это филаменты белка миозина, они перекручены, как мы видели на прошлом занятии; вот здесь еще один. Я обозначу схематически… Сразу можно заметить, что нити миозина находятся в А-диске. Вот это область А-диска. А-диск… Участки нитей актина и миозина накладываются друг на друга, но I-диск - это область, где нет миозина, только актин. I-диск… Филаменты миозина удерживаются титином; это упругий, эластичный белок. Я его обозначу другим цветом. Вот такие спирали… Нити миозина удерживаются титином. Он соединяет миозин с Z-зоной. Итак, что же происходит? При возбуждении нейрона… Нарисуем концевую ветвь нейрона, точнее говоря, концевую ветвь аксона. Это моторный нейрон. Он отдает миофибрилле команду на сокращение. Потенциал действия распространяется по мембране во всех направлениях. А в мембране, мы помним, есть Т-трубочки. Потенциал действия проходит по ним внутрь клетки и продолжает распространяться. Саркоплазматическая сеть выпускает ионы кальция. Ионы кальция связываются с тропонином, который прикрепляется к актиновым филаментам, тропомиозин сдвигается, и миозин может взаимодействовать с актином. Миозиновые головки могут использовать энергию АТФ и скользить по нитям актина. Помните этот «рабочий ход»? Это можно рассматривать как движение актиновых филаментов вправо (от нас) или как движение головки миозина влево (от нас); это ведь зеркальное движение, верно? Смотрите, миозин останется на месте, а актиновые филаменты притянутся друг к другу. Друг к другу. Вот так сокращается мышца. Итак, мы прошли путь от общего вида мышцы к процессам, происходящим на молекулярном уровне, о которых мы говорили на прошлых занятиях. Эти процессы происходят во всех миофибриллах внутри клетки, - ведь саркоплазматическая сеть выпускает кальций в цитоплазму, другое название которой - миоплазма, ведь речь идет о мышечной клетке, всей клетки. Кальций попадает во все миофибриллы. Ионов кальция достаточно, чтобы связаться со всеми - ну или с большей частью - белков тропонина на актиновых филаментах, и вся мышца сокращается. У отдельных мышечных волокон, мышечных клеток, наверное, небольшая сократительная сила. Кстати, когда сокращается одно или несколько волокон, вы ощущаете подергивания. Но когда они работают все, их силы достаточно, чтобы выполнять работу, двигать наши кости, поднимать вес. Надеюсь, занятие было полезным.

Гистогенез

Источником развития скелетной мускулатуры являются клетки миотомов - миобласты. Часть из них дифференцируется в местах образования так называемых аутохтонных мышц. Прочие же мигрируют из миотомов в мезенхиму ; при этом они уже детерминированы, хотя внешне не отличаются от других клеток мезенхимы. Их дифференцировка продолжается в местах закладки других мышц тела. В ходе дифференцировки возникает 2 клеточные линии. Клетки первой сливаются, образуя симпласты - мышечные трубки (миотубы). Клетки второй группы остаются самостоятельными и дифференцируются в миосателлиты (миосателлитоциты).

В первой группе происходит дифференцировка специфических органелл миофибрилл , постепенно они занимают большую часть просвета миотубы, оттесняя ядра клеток к периферии.

Клетки второй группы остаются самостоятельными и располагаются на поверхности мышечных трубок.

Строение

Структурной единицей мышечной ткани является мышечное волокно. Оно состоит из миосимпласта и миосателлитоцитов (клеток-сателлитов), покрытых общей базальной мембраной . Длина мышечного волокна может достигать нескольких сантиметров при толщине в 50-100 микрометров.

Скелетные мышцы прикреплены к костям или друг к другу крепкими, гибкими сухожилиями .

Строение миосимпласта

Миосимпласт представляет собой совокупность слившихся клеток. В нем имеется большое количество ядер, расположенных по периферии мышечного волокна (их число может достигать десятков тысяч). Как и ядра, на периферии симпласта расположены другие органеллы, необходимые для работы мышечной клетки - эндоплазматическая сеть (саркоплазматический ретикулюм), митохондрии и др. Центральную часть симпласта занимают миофибриллы . Структурная единица миофибриллы - саркомер . Он состоит из молекул актина и миозина , именно их взаимодействие и обеспечивает изменение длины мышечного волокна и как следствие сокращение мышцы . В состав саркомера входят также многие вспомогательные белки - титин , тропонин , тропомиозин и др. мотонейрон . Число мышечных волокон, входящих в состав одной МЕ, варьирует в разных мышцах. Например, там, где требуется тонкий контроль движений (в пальцах или в мышцах глаза), моторные единицы небольшие, они содержат не более 30 волокон. А в икроножной мышце, где тонкий контроль не нужен, в МЕ насчитывается более 1000 мышечных волокон.

Моторные единицы одной мышцы могут быть разными. В зависимости от скорости сокращения моторные единицы разделяют на медленные (slow (S-МЕ)) и быстрые (fast (F-МЕ)). А F-МЕ в свою очередь делят по устойчивости к утомлению на устойчивые к утомлению (fast-fatigue-resistant (FR-МЕ)) и быстроутомляемые (fast-fatigable (FF-МЕ)).

Соответствующим образом подразделяют иннервирующие данные МЕ мотонейроны. Существуют S-мотонейроны (S-МН), FF-мотонейроны (F-МН) и FR -мотонейроны (FR-МН) S-МЕ характеризуются высоким содержанием белка миоглобина, который способен связывать кислород (О2). Мышцы, преимущественно состоящие из МЕ этого типа, за их темно-красный цвет называются красными. Красные мышцы выполняют функцию поддержания позы человека. Предельное утомление таких мышц наступает очень медленно, а восстановление функций происходит наоборот, очень быстро.

Такая способность обуславливается наличием миоглобина и большого числа митохондрий . МЕ красных мышц, как правило, содержат большое количество мышечных волокон. FR-МЕ составляют мышцы, способные выполнять быстрые сокращения без заметного утомления. Волокна FR-ME содержат большое количество митохондрий и способны образовывать АТФ путём окислительного фосфорилирования.

Как правило, число волокон в FR-ME меньше, чем в S-ME. Волокна FF-ME характеризуются меньшим содержанием митохондрий, чем в FR-ME, а также тем, что АТФ в них образуется за счет гликолиза . В них отсутствует миоглобин , поэтому мышцы, состоящие из МЕ этого типа, называют белыми. Белые мышцы развивают сильное и быстрое сокращение, но довольно быстро утомляются.

Функция

Данный вид мышечной ткани обеспечивает возможность выполнения произвольных движений. Сокращающаяся мышца воздействует на кости или кожу, к которым она прикрепляется. При этом один из пунктов прикрепления остаётся неподвижным - так называемая точка фиксации (лат. púnctum fíxsum ), которая в большинстве случаев рассматривается в качестве начального участка мышцы. Перемещающийся фрагмент мышцы называют подвижной точкой , (лат. púnctum móbile ), которая является местом её прикрепления. Тем не менее, в зависимости от выполняемой функции, punctum fixum может выступать в качестве punctum mobile , и наоборот.