Гипогаламо-гипофизарно-гонадная система

Взаимодействие гормонов (ось ГГЯ выделена фиолетовым)

Гормональная система организма

Ось гипоталамус-гипофиз-яички (гипогаламо-гипофизарно-гонадная система) - это гормонально взаимосвязанная система органов. Семенники (яички) млекопитающих являются местом формирования половых клеток и выработки (Rommerts, 2004). - стероид, который содержит 19 атомов углерода и секретируется семенниками, представляет собой андроген, преобладающий у большинства млекопитающих. Тестостерон играет важную роль в размножении млекопитающих: необходим для поддержания половой функции, развития половых клеток и вторичных половых органов. У взрослых животных он оказывает дополнительное воздействие на мышечную и костную ткани, кроветворные процессы, свертываемость крови, уровень липидов в плазме крови, метаболизм углеводов и белков, психосексуальные и когнитивные функции. Во время формирования пола у плода млекопитающих тестостерон приводит к маскулинизации структур Вольфа и вызывает формирование внешних гениталий в виде мошонки и пениса. Кроме того, повышение уровня тестостерона в период полового созревания стимулирует соматический рост и вирилизацию у мальчиков.

Выработка андрогенов в семенниках регулируется главным образом лютеинизирующим гормоном (ЛГ) , тогда как для формирования половых клеток требуется скоординированное действие фолликулостимулирующего гормона (ФСГ) и высокой внутри-семенниковой концентрации тестостерона, который вырабатывается клетками Лейдига под влиянием ЛГ (Rommerts, 2004). Паракринное взаимодействие между клетками Сертоли и половыми клетками также является важным компонентом регуляции сперматогенеза, хотя точная роль клеток Сертоли в регуляции развития половых клеток плохо понятна.

Функция семенников регулируется с помощью группы механизмов прямой и обратной связи, которые функционируют на уровне гипоталамуса, гипофиза и семенников. Так, волнообразная секреция (гонадотропин-рилизинг гормона) стимулирует секрецию ЛГ и ФСГ, которая в свою очередь регулируется путем цепи обратной связи с участием половых гормонов, включая половые стероиды, а также ингибин и активин.

Тестостерон может превращаться в под влиянием . Преимущественно эстрогены, а не тестостерон подавляют ось гипоталамус-гипофиз-яички и снижают секрецию эндогенного тестостерона при введении экзогенных препаратов.

Секреция гонадолиберина гипоталамическими нейронами

Миграция нейронов, продуцирующих гонадолиберин, в процессе развития плода. Нейроны, продуцирующие гонадолиберии, происходят из области обонятельной пластинки (Schwanzel-Fukuda, Pfaff, 1989)и мигрируют вдоль обонятельных нервов в передний мозг и затем в место своего окончательного расположения в гипоталамусе. Такая упорядоченная миграция гонадолиберинпродуцирующих нейронов требует скоординированного действия молекул, определяющих направление адгезионных белков, таких, как продукт гена KALIG-1 и рецептор роста фибробластов, а также ферментов, которые помогают нейрональным клеткам прокладывать свой путь в межклеточном пространстве. Мутация любого из этих белков может воспрепятствовать процессу миграции и привести к возникновению дефицита гонадолиберина. У группы пациентов нарушение такой онтогенетической миграции гонадолиберинпродуцирующих нейронов в их окончательное место локализации в гипоталамусе приводит к заболеванию, которое носит название идиопатического гипогонадотропного гипогонадизма, которое характеризуется дефицитом гонадолиберина и нарушением секреции гонадотропина гипофизом (Legouis et al., 1991).

Гипоталамус как интегрирующий центр мужской репродуктивной системы является интегрирующим центром репродуктивной системы и координирует регуляторные сигналы из высших центров и сигналы обратной связи из гонад (Knobil, 1980; Crowley et al., 1991). В гипоталамус поступает информация из центральной нервной системы, которая отражает влияние эмоций; стресса, света, обонятельных стимулов, температуры и других внешних факторов. Сигналы обратной связи от гонад включают стероидные гормоны (тестостерон и эстрадиол) и белковые гормоны (ингибин и активин).

Регуляция ЛГ и ФСГ волнообразной секрецией гонадолиберина. Гонадолиберин представляет собой главный регулятор секреции гонадотропина и увеличивает секрецию ЛГ и ФСГ клетками гипофиза как in vitro, так и in vivo. Волнообразный характер секреции гонадолиберина имеет важное значение для поддержания нормальной секреции ЛГ и ФСГ гипофизом (Belchetz et al., 1978; Knobil, 1980; Shupnik, 1990; Crowley et al., 1991; Weiss et al., 1992). Непрерывное введение гонадолиберина или применение длительно действующих агонистов гонадолиберина приводит к снижению секреции ЛГ и ФСГ - явлению, известному как негативная регуляция(Belchetz et al., 1978; Knobil, 1980). Xaрактер секреции гонадолиберина (амплитуда и частота секреторных выбросом) определяет количественный и качественный состав сскретируемых гонадотропинов (Belchetz et al., 1978; Haiscnleder et al., 1988, 1991; Kim ct al., 1988a, 1988b; Yuan et al., 1988; Shupnik, 1990; Weiss ct al., 1992). Заметное увеличение частоты выбросов гонадолиберина также приводит к утрате чувствительности гонадотропных клеток и последующему уменьшению секреции ЛГ и ФСГ (Belchetz et al., 1978; Merccr et al., 1988; Shupnik, 1990). Электрофизиологическая активность гипоталамических нейронов, продуцирующих гонадолиберин, взаимосвязана с его периодическими секреторными выбросами.

Периодическое применение гонадолиберина индуцирует транскрипцию гена LH-р in vitro (Wicrman ct al., 1989; Shupnik, 1990; Weiss ct al., 1992). Непрерывное введение гонадолиберина усиливает транскрипцию только а-гена, но не генов Р-субъединицы ЛГ или ФСГ (Haiscnleder ct al., 1988). Периодическое применение гонадолиберина также изменяет полиаденилиронание мРНК составляющей ЛГ (Weiss ct al., 1992). Частота стимуляции гонадолиберином имеет важное значение для дифференциальной регуляции генов LH-Р и FSH-бета (Haiscnlcdcrct al., 1988). Болес высокая частота усиливает a-гены и LH-бета, a более низкая - FSH-бета, что стало основанием для предположения о том, что изменения частоты выбросов гонадолиберина могут быть одним из механизмов регуляции выработки двух функционально различных гонадотропинов с помощью одного гипоталамического рилизинг-гормона (Haiscnlcdcr et al., 1988). Непрерывная инфузия гонадолиберина или применение агониста гормона приводит к снижению уровня мРНК LH-p, в то время как уровень мРНК LH-a остается повышенным (Haiscnlcdcr ct al., 1988; Kim ct al., 1988a. 1988b; Yuan ct al.. 1988).

Значительная часть информации в отношении физиологии секреции гонадолиберина была получена при исследовании волнообразного характера изменений уровня ЛГ и ФСГ у мужчин и женщин в норме, а также при изучении эффектов гормонзамещающей терапии с использованием гонадолиберина у больных с идиоматическим гипогонадотронпым гипогонадизмом (Urban ct al., 1988; Crowley ct al., 1991). Исследования таких пациентов с гипоталамическим дефицитом гонадолиберина показывают, что периодическое внутривенное введение этого гормона в количестве 25 нг-кг"1 позволяет воспроизвести нормальную волнообразную секрецию ЛГ со всеми се особенностями (Crowley ct al., 1991). Пиковый уровень гонадолиберина после внутривенного введения такой дозы гормона (500- 1000 пг-мл4) напоминает тот, который можно обнаружить у приматов в случае прямого забора крови из портальной системы гипофиза (Crowley ct al., 1991). У мужчин с идиоматическим гипогонадотрониым гипогопадизмом оптимальный интервал между повышениями уровня гонадолиберина составил 2 ч (Crowley et al., 1991). Увеличение частоты пульсов гонадолиберина ведет к прогрессивному снижению чувствительности к гонадолиберину ЛГ-продуцируюших нейронов (Rebar et al., 1976). Снижение частоты пульсов гонадолиберина или увеличение интервала между ними повышает амплитуду последующего секреторного выброса ЛГ. Существует линейная зависимость между логарифмом дозы пульса гонадолиберина и количеством секретируемых ЛГ, ФСГ и свободной а-составляющей (Spratt et al., 1986; Whitcomb et al., 1990). У взрослых мужчин амплитуда повышения уровня ЛГ в ответ на гонадолиберии значительно превышает амплитуду повышения уровня ФСГ.

Интенсивный забор крови у здоровых мужчин и женщин выявил обширный набор характеристик волнообразного изменения уровня ЛГ (Urban et al., 1988). Средние характеристики показателей колебаний уровня ЛГ у мужчин, по данным одного из недавних исследований (Urban ct al., 1988), выглядят следующим образом; интервал между секреторными выбросами 55 мин, продолжительность пиков ЛГ 40 мин, амплитуда пиков ЛГ 37 % от исходного уровня (увеличение на 1,8 mLU-мл-1)- Значительная вариабельность параметров изменений уровня ЛГ у здоровых мужчин и женщин в норме обусловливает необходимость предосторожностей при интерпретации небольших отклонений в частоте и амплитуде колебаний гормона. Частота забора крови и подход, используемый для количественной оценки параметров колебаний уровня гормона, могут оказывать значительное влияние на вероятность их ошибочной оценки (Urban et al., 1988).

Влияние гонадолиберина на гонадотропные клетки осуществляется посредством их связывания со специфическими мембранными рецепторами, которое приводит к агрегации рецепторов и кальцийзависимому выделению ЛГ (Conn ct al., 1981, 1982).

Секреция гонадотропина в гипофизе

Функциональное строение и развитие гипофиза

Обширные данные иммуноцитологических исследований свидетельствуют о том, что секреция ЛГ и ФСГ в гипофизе происходит в клетках одного типа (Moricrty, 1973; Kovacs ct al., 1985). Гонадотропы - клетки, секретирующие ЛГ и ФСГ, составляют примерно 10 - 15 % от общего количества клеток аденогипофиза () (Moricrty, 1973; Kovacs et al., 1985) и располагаются рассеянно по всему аденогипофизу вблизи кровеносных капилляров. Они легко обнаруживаются в гипофизе плода и неполовозрелых особей (Childs ct al., 1981), однако их количество до момента полового созревания остается небольшим. Кастрация приводит к увеличению количества, а также размера гонадотропных клеток. Клетки аденогипофиза происходят от общих мультипотентных клеток или клеток-предшественников. Генетический анализ мутаций, взаимосвязанных с нарушениями функции гипофиза, возникающими в процессе развития организма, позволили обнаружить молекулярные механизмы развития гипофиза и выделения отдельных клеточных линии (Ingraham et al., 1988; Scully, Rosenfield, 2002). Развитие эмбриона гипофиза и различных типов его клеток управляется скоординированной во времени экспрессией ряда транскрипционных факторов, содержащих гомеодомен. Три гомеобокссодержащих гена Lbx3, Lbx4 и Titfl играют важную роль в раннем органогенезе (Scully, Rosenfeld, 2002). Для клеточной специализации и пролиферации дифференцированных клеток необходима экспрессия транскрипционных факторов Pitl и Propl: Pitl содержит в своем составе POU-снецифический и ДНК-связывающий POU-гомеокомпонент (Scully, Rosenfeld, 2002). Ген Propl кодирует транскрипционный фактор с одним ДНК-связывающим компонентом. Мутации Pitl ассоциированы с дефицитом соматотропного гормона (СТГ), тиреотропного гормона (ТТГ) и пролактина, а мутации Propl помимо дефицита СТГ, пролактина и ТСГ связаны с недостатком ЛГ и ФСГ. Экспрессии Propl и Pitl предшествует экспрессия гена HESX1, мутации в котором связаны с септоптической дисплазией и пангипопитуитаризмом (Parks et al., 1999).

Биохимическое строение и молекулярная биология ЛГ и ФСГ

Семейство гипофизарных гормонов, имеющих гликопротеидную природу, включает ЛГ, ФСГ, ТСГ и (ХГ) (Sairam, 1983; Ryan ct al., 1987; Gharib ct al., 1990). Все эти гормоны являются гетеродимерами, состоящими из а- и P-составляющих. Первичная последовательность р-составляющих ЛГ, ФСГ, ТТГ и ХГ различных видов практически идентична, биологическая специфичность гормонов определяется разнородными P-составляющими. Значительная гомология между двумя составляющими свидетельствует об их общем происхождении от общего предкового гена. Каждая субъединица в отдельности не обладает биологической активностью, они могут оказывать какое-либо воздействие только после формирования гетеродимера. В составе гетеродимера они соединяются дисульфидными связями, расположение цистеиио-вых остатков имеет большое значение для правильной укладки и формирования трехмерной структуры гликопротеида (Sairam, 1983; Ryan et al., 1987; Gharib et al., 1990); a-составляющая ЛГ содержит две углеводные цепи, связанные с остатками аспарагина, тогда как в состав p-составляющая их может входить одна или две (табл. 21.1) (Baezinger, 1990); P-составляющая ХГ, кроме того, содержит О-связанные олигосахариды, которых нет в составе димера ЛГ (Cole ct al., 1984). Несмотря на то что свободные несвязанные а-субъединицы сскрстируются гипофизом в кровяное русло, принято считать, что секреция свободных P-составляющих таким путем практически не происходит. Возникновение хорионического гонадотропина как самостоятельного гонадотропина в ходе эволюционного развития произошло сравнительно недавно (Komfeld, Kornfcld, 1976; Fiddcs ct al., 1984). В отличие от ЛГ, который можно обнаружить в гипофизе значительного числа видов, ХГ найден только в плаценте некоторых видов млекопитающих, а именно у лошадей, бабуинов и человека (Fiddcs et al., 1984); а- и p-составляющие ЛГ и ФСГ кодируются различными генами (Fiddes et al., 1984). Кластер генов p-составляющие ЛГ-ХГ у человека включает семь ХГ-подобных генов, один из которых - ген liLH-бета (Fiddes ct al., 1984). Общая организация гена р-субъединицы ЛГ, состоящего из четырех экзонов и трех нитронов, подобна строению генов р-субъединиц других гликопротеидных гормонов.

Регуляторная роль ЛГ

Секреция тестостерона клетками Лейдига находится под контролем ЛГ, который связывается с рецепторами, сопряженными с G-белком, на клетках Лейдига и активирует сигнальный путь циклического аденозинмонофосфата (цАМФ). Рецептор лютеинизирующего гормона-хориопического гонадотропина (ЛГ-ХГ-рецептор) характеризуется гомологией с другими рецепторами, сопряженными с G-белком, такими, как родопсин, адренергические, ФСГ- и ТТГ-рецепторами(McFarland et al., 1989; Sprengel et al., 1990). Рецепторы, сопряженные с G-белком, представляют собой трансмембранные белки, обладающие общим структурным мотивом, включающим семь проникающих через мембрану доменов. Эти семь доменов расположены на карбоксильном конце молекулы, который содержит также небольшой участок с цитоплазматической локализацией. В его последовательности находятся несколько сериновых и треониновых остатков, которые могут подвергаться фосфорилированию (McFarland et al., 1989; Sprengel et al., 1990).

Лютеииизирующий гормон стимулирует активность фермента, расщепляющего боковые цепи, (side-chain cleavage enzyme) (Simpson, 1979; Mori, Marsh, 1982) - фермента, ассоциированного с цитохромом Р450, который катализирует превращение {холестерина в прегненолон, ограничивающий скорость этапа биосинтеза тестостерона. Этот гормон увеличивает поступление холестерина к ферменту, расщепляющему боковые цепи, таким образом, увеличивая эффективность реакции превращения холестерина в прегненолон (Simpson, 1979; Mori, Marsh, 1982). Регуляторный белок стероидогенеза (steroidogenesis acute regulatory protein, STAR) делает холестерин доступным для комплекса, расщепляющего боковые цепи, и регулирует скорость биосинтеза тестостерона (Clark, Stocco, 1996). Периферический рецептор бензодиазипина, митохондриальный белок, связывающий холестерин, который принимает участие в транспорте холестерина и представлен в большой концентрации на внешней митохондриальной мембране, также предлагается на роль активного регулятора процесса стероидогеиеза. К долговременным эффектам ЛГ относятся стимуляция экспрессии генов и синтеза ряда ключевых ферментов пути биосинтеза стероидов, включая фермент, расщепляющий боковые цепи, 3-р-гидроксистероид дегидрогеназу, 17-а-гидроксилазу и 17,20-лиазу (Simpson, 1979; Mori, Marsh, 1982). Несмотря на то что ЛГ активирует также сигнальный путь фосфолипазы С, остается неясным, насколько это имеет важное значение для ЛГ-опосредованной стимуляции выработки тестостерона. Кроме того, в контроле стероидогеиеза в клетках Лейдига принимают участие инсулиноподобный фактор роста I; белки, связывающие инсулиноподобный фактор роста; ингибины, активины, трансформирующий фактор роста-p, эпидермальный фактор роста, интсрлейкин-1, основной фактор роста фибробластов, гонадолиберии, вазопрессин и еще одна группа плохо охарактеризованных митохондриальных белков.

Регуляторная роль ФСГ у самцов млекопитающих

ФСГ связывается со специфическими рецепторами клеток Сертоли и стимулирует выработку ряда белков, в числе которых ингибинподобные пептиды, трансферрин, андрогенсвязывающий белок, рецептор андрогенов и 7-глутамилтранспептидаза. Вместе с тем роль ФСГ в регуляции процесса сперматогенеза остается малопонятной. Преобладает точка зрения, согласно которой ЛГ действует на клетки Лейдига, стимулируя выработку в большом количестве тестостерона (Boccabella, 1963; Steinberger, 1971; Sharpe, 1987). Затем тестостерон влияет на сперматогонии и сперматоциты, инициируя процесс их мейотического деления. Предполагается, что ФСГ необходим для спермогенеза, т. е. процесса созревания, в котором спсрматиды развиваются в зрелые сперматозоиды. Однако данные экспериментов на животных и исследований пациентов с идиопатическим гипогонадотропным гипогонадизмом после лечения гонадотропинами показывают, что ФСГ играет более сложную роль в поддержании количественно нормального сперматогенеза.

У крыс и нечеловекообразных приматов тестостерон сам по себе может поддерживать сперматогенез в случае применения после удаления гипофиза или перерезания ножки гипофиза (Marshall et al., 1983; Sharpe et al., 1988; Stager et al., 2004). Однако, если тестостерон применяется спустя некоторое время (через несколько недель или месяцев) после подобной операции, его эффективность в отношении восстановления сперматогенеза существенно снижается. Сперматогенез, который поддерживается у самцов грызунов и нечеловекообразных приматов с удаленным гипофизом путем введения тестостерона, является качественно, но не количественно нормальным (Marshall et al., 1983; Sharpe et al., 1988; Stager et al., 2004). Более эффективной для повторной инициации сперматогенеза по сравнению с тестостероном оказалась его комбинация с ФСГ (Stager et al., 2004). Таким образом, несмотря на то что ЛГ сам по себе может поддерживать или повторно инициировать сперматогенез, для количественно нормальной продукции спермы необходим ФСГ.

У мужчин, у которых дефицит ЛГ и ФСГ возник в препубертатном возрасте, ЛГ или хорионический гонадотропин человека сами по себе не могут инициировать сперматогенез (Bardin et al., 1969; Matsumoto et al., 1983, 1984; Finkel etal., 1985). Однако если дефицит гонадотропинов развивается после того как у пациента произошло половое созревание, ЛГ и чХГ могут самостоятельно инициировать повторно качественно нормальный сперматогенез (Finkel et al., 1985). Таким образом, ФСГ необходим для инициации процесса сперматогенеза, но после его начала для его поддержания достаточно высоких доз тестостерона. Этот факт позволяет предполагать, что ФСГ может принимать участие в определенном виде “программирования", происходящем в период полового созревания, после чего ЛГ может самостоятельно поддерживать процессы развития и созревания половых клеток.

Концентрация андрогенов в семенниках намного выше, чем в сыворотке крови. Однако касательно высокого уровня тестостерона в семенниках существуют достаточно разноречивые мнения (Sharpe, 1987; Sharpe etal., 1988; Stager etal., 2004). Например, стимулирующий эффект экзогенного тестостерона па сперматогенез у крысы не связан с пропорциональным увеличением его внутрисемеиникового уровня. У взрослых обезьян с удаленным гимофизом или после введения антагоиистов гонадолиберина, которым вводили тестостерон, наблюдается прямая зависимость между уровнем тестостерона в семенниках и сперматогенезом (Stager et al., 2004). Метод посмертного сбора тканей семенников влияет на оценки внутрисеменииковой концентрации тестостерона (Stager et al., 2004). Таким образом, взаимосвязь между внутрисеменниковой концентрацией тестостерона, ФСГ и сперматогенезом остается малопонятной. Рецепторы андрогенов обнаруживаются на клетках Сертоли и перитубулярных клетках, на некоторых клетках Лейдига и эндотелиальных клетках небольших артериол. В то же время нам неизвестно о наличии рецепторов андрогенов на половых клетках. Принято считать, что влияние андрогенов на сперматогенез опосредовано через клетки Сертоли, хотя возможно, что тестостерон может также непосредственно действовать на развитие половых клеток. Тестостерон влияет па секрецию белков как сферическими спсрматидами, так и клетками Сертоли. Максимальная экспрессия рецепторов андрогенов наблюдается в стадии VI-VII сперматогенного эпителия, тестостерон регулирует апоптоз половых клеток в зависимости от стадии их развития.

Для трансдукции сигнала ФСГ к половым клеткам требуется участие клеток Сертоли, поскольку рецепторы ФСГ имеются на этом типе клеток, но отсутствуют на половых клетках. Рецептор ФСГ также представляет собой полипептид, сопряженный с G-белком, состоящий из гликозилированиого внеклеточного домена, который соединяется с С-концевым участком, содержащим 7 трансмембранных участков (Sprengel et al., 1990).

Обратная связь в регуляции секреции лютеинизирующего и фолликулостимулирующего гормонов

Обратная регуляция с помощью тестостерона

Тестостерон занимает важное место в регуляции секреции гонадотропинов у самцов посредством обратной связи. У ряда экспериментальных животных после кастрации резко повышается уровень ЛГ и постепенно ФСГ (Yamamoto et al., 1970; Badger et al., 1978). После кастрации повышается уровень мРНК ЛГ-а и I (Gharib et al., 1986) и ФСГ-р (Gharib et al., 1987), при этом изменения содержания ФСГ-а выражены в гораздо меньшей степени.

Посткастрационное повышение содержания ЛГ в сыворотке крови и уровня мРНК ЛГ-р обусловлено как изменением количества гонадотропных клеток, так и гипертрофией отдельных гонадотропов (Childs et al., 1987). Введение тестостерона, начатое сразу после кастрации или вскоре после нее, может ослаблять посткастрационный рост уровня мРНК ЛГ-а и -р, a также уровня ЛГ в сыворотке крови, однако незначительно влияет на уровень мРНК ФСГ-р (Gharib et al., 1986, 1987).

Тестостерон оказывает комплексное влияние на секрецию и синтез ФСГ

Суммарный эффект in vivo применения тестостерона у мужчин в норме заключается в снижении уровня ФСГ в сыворотке крови (Swerdloff et al., 1979; Winters et al., 1979). Однако прямое воздействие тестостерона на выделение ФСГ на уровне гипофиза стимулирующее (Steinberg, Chowdhury, 1977; Bhasin et al., 1987; Gharib et al., 1987). В культуре изолированных клеток гипофиза тестостерон увеличивает выделение ФСГ в среду (Steinberg, Chowdhury, 1977). Это сопровождается увеличением уровня мРНК ФСГ-р в 3-4 раза (Gharib et al., 1990). У интактных самцов мыши при блокировании действия гонадолиберина путем применения его антагониста тестостерон повышает уровень ФСГ дозозависимым образом (Bhasin et al., 1987). Показано, что у кастрированных животных, которым вводили антагонист гонадолиберина, введение тестостерона в постепенно увеличивающихся дозах сопровождается ростом уровня ФСГ в сыворотке крови. Эти данные показывают, что стимулирующий эффект тестостерона на уровень ФСГ в сыворотке крови опосредован не столько воздействием на гонадальный ингибитор ФСГ, сколько непосредственным влиянием на уровне гипофиза. Тестостерон повышает уровень мРНК ФСГ-р, но не ЛГ-р. В то же время у интактных самцов животных тестостерон подавляет стимулированную гонадолиберином секрецию ФСГ, что в результате приводит к снижению уровня ФСГ в сыворотке крови.

При введении человеку и крысам тестостерон в норме подавляет секрецию ЛГ (Santen, 1975; Matsumoto et al., 1984; Veldhuis et al., 1984). Такие подавляющие эффекты проявляются преимущественно на гипоталамическом уровне - это заключение подтверждает факт снижения тестостероном частоты секреторных выбросов ЛГ у мужчин с нормальными гонадами (Matsumoto, Bremncr, 1984; Schcckter et al., 1989; Finkclstcin et al., 1991a). Андрогены не оказывают прямого воздействия на уровень мРНК ЛГ-р в монослойной культуре клеток гипофиза крысы. Сходным образом у самцов крыс после введения антагониста гонадолиберина введение тестостерона, в постепенно увеличивающихся дозах, приводит только к росту уровня мРНК ФСГ-р, но не мРНК ЛГ-р (Bhasin et al., 1987). В отличие от крыс у людей, больных идиоматическим гипогонадотропным гипогонадизмом, амплитуда колебаний ЛГ, вызванных и поддерживаемых периодическим введением гонадолиберина, уменьшается после введения тестостерона, что свидетельствует о том, что у человека тестостерон оказывает дополнительное воздействие на уровне гипофиза, ослабляя секрецию ЛГ в ответ на стимуляцию гонадолиберином (Matsumoto et al., 1984; Schekter et al., 1989; Finkelstein et al., 1991a). Эти исследования показывают, что у мужчин тестостерон или один из его метаболитов ингибируют секрецию гонадотропина на уровне гипофиза и гипоталамуса.

Ингибирующий эффект тестостерона опосредован непосредственно тестостероном и опосредованно его метаболитами - эстрадиолом и дигидротестостероном. Применение ингибиторов ароматазы или 5-а-редуктазы сопровождается увеличением концентрации ЛГ, что согласуется с представлениями о роли эстрадиола и дигидротестостерона в усилении ингибирующего воздействия тестостерона в цепи обратной связи (Santen, 1975; Finkelstein et al., 1991b; Gormley, Rittmaster, 1992). Однако применение не поддающегося ароматизации андрогена дигидротестостерона также подавляет секрецию ЛГ в соответствии с предположением о том, что а

Симптом бесплодия есть проявление истощения компенсаторных возможностей тех или иных звеньев системы регуляции репродукции. В 50 - 70% случае бесплодие определяется состоянием жены, в 20 - 25% случаев - состоянием мужа. В 10 - 30% случаев встречаются смешанные формы, а в 2 - 5% случаев причина бесплодия не ясна (2). В структуре женского бесплодия эндокринные нарушения встречаются в 35 - 40% случаев, нарушения функции маточных труб - в 30 - 40% случаев, маточные факторы - в 10%, шеечные - в 7 - 10% случаев, влагалищные - в 6%, экстрагенитальные - в 1%, психические - в 1% случаев. Такие или сходные данные приводятся в большинстве руководств по гинекологии (10).

Основой репродуктивной системы женщины является ось гипоталамус - гипофиз - яичник, правильное функционирование которой обеспечивает созревание полноценной яйцеклетки, адекватную подготовку эндометрия к беременности, трубный транспорт гамет, оплодотворение, имплантацию и сохранение ранней беременности.

Высшим органом регуляции гипоталамо-гипофизарно-яичниковой оси является центральная нервная система, путем целого комплекса прямых и обратных связей обеспечивающая стабильность работы системы репродукции при изменении внутренней и внешней среды (14, 21). К настоящему времени открыто более 36 пептидов, регулирующих секрецию Гн-РГ (28). На основании того, что все основные нейроэндокринные круги прямо или косвенно связаны с иммунной системой и кроме эндокринных центров связывают участки мозга с лимфоидной тканью, в настоящее время некоторые исследователи говорят не о нейроэндокринной, а о нейро-иммунно-эндокринной системе регуляции репродукции (30, 33).

Рилизинг-фактором двух главных гонадотропинов, ЛГ и ФСГ, является Гн-РГ, декапептид, синтезированный Schally и Guillemin в 1977 году. Гн-РГ синтезируется в аркуатном ядре медиобазального гипоталамуса и поступает в систему воротного кровотока гипофиза в импульсном режиме. Для обеспечения нормальной секреции гонадотропинов достаточно поддержания стабильной частоты выброса физиологических количеств Гн-РГ. Изменение частоты выброса Гн-РГ меняет не только количество ЛГ и ФСГ, выделяемых гипофизом, но и их соотношение, в то время как даже десятикратное повышение концентрации Гн-РГ ведет только к небольшому снижению выделения ФСГ и никак не меняет секреции ЛГ.

Частота выброса Гн-РГ у человека составляет 1 выброс в 70 - 90 минут и соответствует целому ряду биоритмов (чередованию фаз сна, колебанию скорости клубочковой фильтрации и желудочной секреции, частоте приливов во время климакса и т.д., что подтверждает гипотезу Kleitmann о существовании общего ритма с периодичностью около 90 минут, имеющего связь с базальным циклом покоя - активности (20), который объясняется геофизическими причинами (22, 37). Основными факторами, регулирующими частоту выделения Гн-РГ являются опиаты и альфа-адреноблокаторы (6, 12, 13). Пульсовой генератор ритма - аркуатное ядро - не нуждается для поддержания своей нормальной работы ни в каких влияниях со стороны других отделов нервной системы (1). В физиологических условиях пульсовой генератор получает информацию о выделении гонадотропинов гипофизом по системе короткой обратной связи, так как специальные сфинктеры регулируют градиенты давлений в воротной системе кровотока, и часть крови из гипофиза поступает не в кавернозный синус, а обратно в гипоталамус, что обеспечивает очень высокую местную концентрацию гормонов гипофиза в гипоталамусе (31). Синтез и секреция ЛГ и ФСГ в гипофизе осуществляются одними и теми же клетками (7). На поверхности гонадотропов имеются рецепторы к Гн-РГ, плотность которых зависит от уровня стероидных гормонов в крови и от концентрации Гн-РГ. Соединение Гн-РГ с рецептором вызывает массивное поступление ионов кальция внутрь клетки, что через несколько минут ведет к выбросу запаса ЛГ и ФСГ в кровоток. Кроме того, Гн-РГ вызывает стимуляцию синтеза ЛГ и ФСГ и поддерживает целостность гонадотропов (40). Изменения частоты пульсового генератора меняет соотношение ЛГ и ФСГ, выделяемых гипофизом (24). Так, повышение ритма ведет к значительному повышению выброса ФСГ и к снижению выброса ЛГ. Частотная модуляция информации обеспечивает быстроту и надежность регуляции репродуктивной системы и ее устойчивость к помехам (4, 36). В лютеиновую фазу прогестерон через эндогенные опиаты урежает частоту пульсового генератора, причем данное действие определяется не концентрацией прогестерона, а длительностью его воздействия. Эстрадиол, действуя на гипоталамус и на гонадотропы (увеличение плотности рецепторов Гн-РГ), повышает амплитуду волны ЛГ /ФСГ (16, 39).

Прогестерон стимулирует образование в гипоталамусе ингибитора, устраняющего данное влияние эстрадиола (29, 35). Таким образом исключается возможность пика ЛГ в лютеиновую фазу, что могло бы нарушить созревание когорты фолликулов для следующего менструального цикла (11).

Гонадотропины являются главными регуляторами синтеза и секреции половых стероидов. Местом выработки половых стероидов в организме могут быть фолликулярный комплекс (тека интерна, тека экстерна, гранулеза и ооцит), желтое тело и строма яичника. Полноценность циклических изменений, обеспечивающих подготовку организма женщины к беременности, определяется качеством селекции и созревания доминантного фолликула. Основные закономерности фолликулогенеза были установлены рабочей группой профессора Ходжена на рубеже 1970-х и 1980-х годов (11). Ими были предложены термины рекрутирование, когорта, селекция, установление доминантности. Рекрутированием назван процесс перехода фолликулов из примордиальной стадии в антральную, так как только с этого времени процесс созревания становится зависимым от действия гонадотропинов. Процесс рекрутирования определяется внутрияичниковыми факторами и происходит постоянно, но образовать когорту - группу фолликулов, из которой выделится доминантный - смогут только те фолликулы, которые рекрутируются в последние 4 дня лютеиновой фазы предыдущего цикла (39). Число рекрутируемых фолликулов определяется скорее всего уровнем гонадотропинов в позднюю лютеиновую фазу и локальной концентрацией прогестерона в яичнике, что объясняет чередование овуляции в правом и в левом яичниках. Рост когорты фолликулов в раннюю фолликулярную фазу объясняется благоприятными условиями соотношения ЛГ и ФСГ и локальных концентраций эстрогенов и андрогенов. Действие ЛГ и ФСГ на фолликул строго специализировано: ЛГ стимулирует процесс синтеза андрогенов de novo клетками теки и практически не действует на клетки гранулезы, а ФСГ активирует ароматазную систему гранулезы, превращающую синтезированные в теке андрогены в эстрадиол (15).

Эстрогены и ФСГ тормозят атрезию преантрального фолликула и стимулируют пролиферацию клеток гранулезы, синтез рецепторов к ФСГ и индукцию рецепторов к ЛГ, начинающуюся на периферии фолликула и идущую к центру. Появление рецепторов к ЛГ в клетках гранулезы больших фолликулов является предпосылкой для синтеза прогестерона желтым телом. ЛГ через стимуляцию андрогенного синтеза ограничивает и уменьшает синтез рецепторов к ФСГ, ЛГ, эстрадиолу в клетках фолликула. Синергизм действия ЛГ и ФСГ в раннюю фолликулярную фазу вызывает значительное усиление секреции эстрогенов яичником. Это в свою очередь индуцирует повышение индекса ЛГ/ФСГ, что смещает синтез половых стероидов в фолликулах в сторону преимущественного образования андрогенов. При нормальном развитии событий к 8 дню менструального цикла заканчивается селекция доминантного фолликула, главным свойством которого является способность усиливать эстрогенную продукцию в условиях дефицита ФСГ и полностью подавлять развитие других фолликулов когорты с помощью внутрияичниковых и гипоталамо-гипофизарных связей (8, 11, 18, 42). Если по какой-либо причине доминантный фолликул гибнет, должен вновь произойти рекрутский набор, так как ни один другой фолликул данной когорты не сможет принять на себя роль доминантного. Важную роль в процессе подавления других фолликулов играет полипептидный регулятор ингибин, избирательно подавляющий секрецию ФСГ, и фолликул-регулирующий протеин, избирательно подавляющий ароматазную активность гранулезы.

На 12 - 14 день цикла доминантный фолликул отвечает почти за всю продукцию эстрадиола в больших количествах, что вызывает пик ЛГ и ФСГ, являющийся причиной овуляции.

Важное значение для нормальной работы желтого тела имеет пик ФСГ в середине цикла, обеспечивающий индукцию синтеза рецепторов к ЛГ в клетках гранулезы преовуляторного фолликула.

У здоровых женщин правильное развитие доминантного фолликула вызывает:

  1. адекватную продукцию эстрадиола, обеспечивающую созревание эндометрия и накопление в его эпителии рецепторов к прогестерону и созревание шеечной слизи;
  2. полноценную овуляцию;
  3. подготовку рецепторов к ЛГ в гранулезе, долженствующей превратиться в желтое тело.

Таким образом, качество лютеиновой фазы определяется прежде всего процессами, происходящими в первую фазу цикла. По классификации ВОЗ 1976 года все нарушения эндокринной функции яичников делятся на 7 больших групп:

  1. гипогонадотропная нормопролактинемическая недостаточность;
  2. нормогонадотропная нормопролактинемическая недостаточность;
  3. гипергонадотропная недостаточность;
  4. анатомическая форма аменореи;
  5. гиперпролактинемии;
  6. гиперпролактинемии;
  7. объемные процессы в гипоталамо-гипофизарной области, не меняющие секрецию пролактина (5).

Подавляющее большинство больных с нарушением функции яичников, обращающихся по поводу бесплодия, относятся ко 2-й группе нарушений по классификации ВОЗ - эугонадотропной гипоталамо-гипофизарной дисфункции. Клинически в данной группе можно выделить подгруппу 2а - больные со спонтанными менструальными циклами - и подгруппу 2б - больные с аменореей. Для больных подгруппы 2а характерны недостаточность лютеиновой фазы вследствие нарушения созревания доминантного фолликула, нарушения овуляции и нарушения функции желтого тела, а также ановуляторные менструальные циклы, отличающиеся тем, что доминантный фолликул созревает, но не овулирует, в период атрезии доминантного фолликула происходит лютеинизация гранулезы и теки, сопровождающиеся резко сниженной продукцией прогестерона. Базальная температура при этом или не повышается, или повышается незначительно.

Недостаточность лютеиновой фазы, ановуляция и аменорея как правило являются выражением степени эндокринных нарушений и часто выступают как стадии одной процесса (34).

Типичным выражением яичниковой недостаточности 2-го типа является повышение отношения ЛГ/ФСГ, сопровождается небольшой (в сравнении с гормон-продуцирующими опухолями) надпочечниковой и /или яичниковой гиперсекрецией андрогенов (5). Традиционно такие формы гипоталамо-гипофизарно-яичниковой дисфункции относили к синдрому поликистозных яичников. Однако данный термин оспаривается рядом авторов. С одной стороны, увеличение яичников может иметь место при синдроме Кушинга, андрено-генитальном синдроме, при гормон-продуцирующих опухолях, а иногда - у здоровых подростков. С другой стороны, у женщин с типичными проявлениями данного синдрома могут быть яичники нормальных размеров. Кроме того, при данном синдроме анатомические изменения яичников являются только следствием нарушенных гормональных взаимодействий в организме.

Поэтому предлагается называть данный вид патологии синдромом гиперандрогении с хронической ановуляцией (19). Со стороны гормональных изменений самыми характерными признаками являются значение отношения ЛГ/ФСГ больше 2 и повышение уровня андрогенов (тестостерона, андростендиона и ДГЭА-С) в периферической крови (17).

По сравнению со здоровыми женщинами, у которых главным эстрогеном в циркулирующей крови является эстрадиол, у женщин с синдромом гиперандрогении значительно повышен уровень эстрона, который может превышать концентрацию эстрадиола. Главным источником повышения уровня эстрона у таких больных является периферическая ароматизация андростендиона. Постоянная и монотонная продукция эстрона сенсибилизирует гипофиз к действию Гн-РГ, следствием чего является повышение отношения ЛГ/ФСГ, секретируемых гипофизом. В свою очередь, высокий уровень ЛГ ведет к чрезмерной стимуляции стромы яичника и теки, результатом чего является чрезмерная продукция андрогенов. В этих условиях резко нарушаются как процесс селекции доминантного фолликула, так и его полноценность, что ведет к опсоменорее, ановуляции, недостаточности лютеиновой фазы и к аменорее (9, 27).

Гипоталамо-гипофизарная дисфункция при II типе яичниковой недостаточности является чисто функциональным нарушением, при котором нарушается положительная обратная связь. Этиология синдрома гиперандрогении с хронической ановуляцией до сих пор не известна. Доказано, что важную роль в развитии синдрома играют наследственность, центральные нарушения катехоламинов, психический стресс и ожирение (32).

Важную роль в развитии заболевания придают дисфункции коры надпочечников. У значительной части больных надпочечники очень чувствительны к стимуляции АКТГ. В связи с этим высказана гипотеза о секреции гипофизом специфического гормона, стимулирующего андрогены коры надпочечников с молекулярным весом около 60 000 (32). Часть больных является гетерозиготными носительницами дефекта С-21-гидроксилазы (38).

Кроме того, повышенную продукцию андрогенов клетками теки может вызвать и повышенный уровень инсулина за счет перекрытия специфичности инсулина и локальных факторов роста (3). Следовательно, гирсутизм и гиперандрогения могут быть проявлением глубоких метаболических расстройств.

Для гиперандрогенной недостаточности яичников характерно повышение амплитуды и частоты залпов ЛГ гипофиза (41).

Важную роль в патогенезе играет влияние андрогенов на уровень белка, связывающего тестостерон и эстрогены (ТЭСГ). При гиперандрогении и ожирении синтез ТЭСГ в печени снижается, что ведет к повышению активных концентраций эстрогенов и тестостерона в крови, в результате чего проявления гиперандрогении усиливаются. Есть указания на то, что важную роль в развитии синдрома играют ненаследственные внутриутробные влияния, и что гиперандрогения у матери может оказывать неблагоприятное влияние на созревание различных ферментных систем плода (25). При синдроме гиперандрогении меняется соотношение норадреналина и допамина, и возникающий дефицит допамина ведет к усилению выброса ЛГ.

Нарушение развития доминантного фолликула и овуляции при нормогонадотропной недостаточности яичников ведет к развитию НЛФ (23).

Выделяют 5 причин развития НЛФ: нарушение созревания фолликула; недостаточная стимуляция ЛГ во 2- фазу цикла; недостаточная и /или запоздалая лютеинизация преовуляторного фолликула; мягкие формы гиперпролактинемии; гиперандрогении различного происхождения (23). Гормональным проявлением НЛФ является снижение продукции прогестерона желтым телом, сопровождающееся нормальной или повышенной секрецией эстрадиола (относительная гиперэстрогения). На клеточном уровне НЛФ проявляется усилением клеточных делений (эндрометрий, молочная железа, миометрий). Клинически НЛФ проявляется предменструальным синдромом, нарушениями менструального цикла, снижением фертильности, доброкачественными опухолями молочных желез и миомой матки. Причинами бесплодия при НЛФ являются недостаточная зрелость эндометрия, затрудняющая нормальную имплантацию и недостаточный для поддержки ранней беременности уровень прогестерона (26).

  1. The arcuate nucleus and the control of gonadotropin and prolactin secretion in the female rhesus monkey (Macaca mulatta). -Plant T.M., Krey L.S., Moossy J., McCormack J.T., Hess D.L., Knobil E. //Endocrinology, 1978, v. 102, N 1, p. 52-62.
  2. Baltzer J., Mickan H. Kern Gynäkologie. 4. Aufl. Stuttgart: Thieme, 1985. -685 S.
  3. Barbieri R.L., Ryan K.J. Hyperandrogenism, insulin resistance and acanthosis nigrans syndrome: A common endocrinopathy with distinct pathophysiologic features. //American Journal of Obstetrics and Gynecology, 1983, v. 147, N 1, p. 90-101.
  4. Bohumil R.J. Pulsatile variations in hormone levels. //Biorythms and human reproduction. - Ferin M., Halberg F.,Richart R. M., Van de Wiele R. L. (Eds) New York: Wiley, 1974, p. 107-131.
  5. Breckwoldt M. Störungen der Ovarialfunktion. //Reproduktionsmedizin. -Bettendorf J., Breckwoldt M. (Hrsg.). Stuttgart; New York: Fisher, 1989, S. 258-266.
  6. Central electrophysiological correlates of pulsatile luteinizing hormone secretion in the rhesus monkey. -Wilson R. S., Kesner J.S., Kaufman J.M, Uemura T., Akema T., Knobil E. //Neuroendocrinology, 1984, v. 39, N 3, p. 256-260.
  7. Childs G.V. Functional ultrastructure of gonadotropes: a review. //Morfology of hypothalamus and its connections. -Ganten D., Pfaff D. (Eds.). Berlin: Springer, 1986, p. 49-98.
  8. Correlation of human follicular fluid inhibin activity with spontaneous an
  9. d induced follicular maturation. -Murrs R.P., Lobo J.D., Campeau J.D., Nakamura R.M., Brown J., Ujita E.L., DiZerega G.S. //Journal of Clinical Endocrinology and Metabolism, 1987, v. 64, N 1, p. 148-152.
  10. Davis O.K., Ravnikar V. Induction of ovulation with Clomiphen Citrate. //Reproductive endocrine therapeutics. - Barbiery L., Schiff I. (Eds.). New York: A.R. Liss, Inc., 1988, p. 1-24.
  11. Diedrich K., Wildt L. Neue Wege in der Behandlung ovarieller Funktionsstorungen. Teil 1. //Neue Wege in der Diagnostik und Therapie der Weiblichen Sterilität. -Diedrich K., Hrsg. -Stuttgart: F. Enke, 1987, p. 26-40.
  12. DiZerega G.G., Hodgen G.D. Folliculogenesis in the primate ovarian cycle. //Endocrine review 1981, v. 2, N 1, p. 27-49.
  13. The effect of morphine on the electrophysiological activity of the hypothalamic luteinizing hormone-releasing hormone pulse generator in the rhesus monkey. -Kesner J.S., Kaufman G., Wilson R. C., Kuroda G., Knobil E. //Neuroendocrinology, 1986, v. 43, N 6, p. 486-488.
  14. Electrophisiological manifestation of luteinizing hormone releasing hormone pulse generator activity in the rhesus monkey: influence of a adrenergic and dopaminergic blocking agents. -Kaufman J.M., Kesner J.S., Wilson R.S., Knobil E. //Endocrinology, 1985, v. 116, N 4, p. 1327-1333.
  15. Everett J.W. Central neural control of reproductive functions of the adenohypophysis. //Physiology review, 1964, v. 44, p. 373-431.
  16. Falck B. Site of production of estrogens in rat ovary as studied by microtransplants. //Acta physiologica Scandinavica, 1959, v. 163, N 1, p. 1.
  17. Ferin M., van Vugt D., Wardlaw S. The hypothalamic control of the menstrual cycle and the role of endogenous opioid peptides. //Recent progress in hormone research, 1984, v. 40, p. 441-485.
  18. Givens J.R., Andersen R.N., Umstot E.S. Clinical findings and hormonal responses in patients with polycystic ovarian disease with normal versus elevated LH levels. //Obstetrics and gynecology, 1976, v. 47, N 4, p. 388-394.
  19. Hoffmann F. Untersuchunden über die hormonale Regulation der Follikelreifung im Zyklus der Frau. //Geburtshilfe und Frauerheilkunde, 1961, Bd. 21, S. 554-560.
  20. Infertility, contraception and reproductive endocrinology. Ed. by D.R. Mishell, Jr.; V. Davaian, 2-nd edition. - Oradell: Medical Economics Books, 1986. -IX, 688 p.
  21. Kleitmann N. Sleep and wakefulness. - Chicago: Chicago University Press, 1963. -250 p.
  22. Lakoski J.M. Cellular electrophysiologycal approaches to the central regulation of female reproductive aging. //Neural control of reproductive function. -J.M. Lakoski, J.R. Perez-Polo, D.K.Rassin (Eds.). -New York: Liss, 1989, p. 209-220.
  23. Lavie P., Kripke D.F. Ultradian circa 1½ hour rhythms: A multioscillatory system. //Life sciences, 1981, v. 29, N 24, p. 2445-2450.
  24. Leyendecker G., Wildt L., Plotz E.J. Die hypothamische Ovarialinsuffizienz.//Gynäkologe, 1981, Bd. 14, N 2, S. 84-103.
  25. Lobo R.A. Polycystic ovary syndrome. //Infertility, contraception and reproductive endocrinology. Ed. by D.R. Mishell, Jr. and V. Davajan, 2-nd edition. - Oradell: Medical Economics Books, 1986, p. 319-336.
  26. Mauvais-Jarvis P., Kutten F. Insuffisance gonadotrope dissociée (anovulation et dysovulation)
  27. . //Médecine de la reproduction. Gynécologie endocrinienne. -Paris: Flammarion, 1982, p. 305-319.
  28. The microinvironment of the human antral follicle: Interrelationships among the steroid levels in human antral fluid, the population of granulosa cells and the status of the oocyte in vivo and in vitro. -McNatty K.P., Smith D.M., Makris A., Osathanonolh R., Ryan K.J. //Journal of clinical endocrinology and metabolism, 1979, v. 49, N 6, p. 851-860.
  29. Miller B.T. Peptide modulation of luteinizing hormone releasing hormone secretion. //Neural control of reproductive function. -J.M. Lakoski, J.R. Perez-Polo, D.K. Rassin (Eds.). New York: A.R.Liss, Inc., 1989, p. 255-271.
  30. Mode of action of progesterone in the blocade of gonadotropin surges in the rhesus monkey. -Pohl C.R., Richardson W.D., Marshall G., Knobil E. //Endocrinology, 1982, v. 110, N 4, p. 1454-1455.
  31. The Neuro-immune-endocrine connection. - Cotman C., Brinton R.E., Galaburda A., McEwen B.C. -New York: Raven Press, 1986. -150 p.
  32. Page R.B. Pituitary blood flow. //American journal of physiology, 1982, v. 243, N 6, p. 427-442.
  33. Parker L.N., Odell W.B. Control of adrenal androgen secretion. //Endocrine review, 1980, v. 1, N 4, p. 392-410.
  34. Perez-Polo J.R. Introduction: Neuroimmune modulation of reproductive function. //Neural control of reproductive function. -J.M. Lakoski, J.R. Perez-Polo, D.K. Rassin (Eds.). -New York: A.R. Liss, 1989, p. 307-309.
  35. Plotz E.J. Differentialdiagnose und Therapie ovarieller Funktionsstörungen: Richtlinien fur die Praxis. //Gynäkologe, 1981, Bd. 14, N 2, S. 145-148.
  36. The pulsatile pattern of gonadotropin secretion and follicular development durung the menstrual cycle and in women with hypothalamic and hyperandrogenic amenorrhea. -Wildt L., Schwilden H., Werner G., Roll C., Brensing K.A., Vuckhaus J., Böhr M., Leyendecker G. //Brain and pituitary peptides II. - G. Leyendecker, H. Stock, L. Wildt (Eds.). -Basel: Karger, 1983, p. 28-36
  37. .
  38. Rushton W.A.H. Peripheral coding in the nervous system. //Sensory communication. -W.A. Rosenblith (Ed.). -New York: Wiley, 1961, p. 20-30.
  39. Shapiro S. Compass on the 90-minutes sleep-dream cycle. //Sleep and dreaming. -Hartman E. (Ed.) -Boston: Little and Brown, 1970, p. 40-49.
  40. An update of congenital adrenal hyperplasia. - New M.I., Dupont B., Pang S., Pollack M., Levine S.L. // Recent progress in hormone research, 1981, v. 37, p. 105-181.
  41. Wildt L. Die endokrine Kontrolle der Ovarialfunktion und die Pathologie endokriner Ovarialfunktionsstörungen. // Neue Wege in Diagnostik und Therapie der weiblichen Sterilität. -Hrsg. von K. Diedrich. - Stuttgart: Enke, 1987, S. 1-25.
  42. Wildt L. Hypothalamus. //Reproduktionsmedizin. - Hrsg. von Bettendorf G., Breckwoldt M. - Stuttgart: Fischer, 1989, S. 6-22.
  43. Yen S.S.C. The polycystic ovary syndrome. //Clinical endocrinology, 1980, v. 12, N 2, p. 177-207.
  44. Zeleznik A.J., Schuler H.M., Reichert L.C., Jr. Gonadotropin binding sites in the rhesus monkey ovary: Role of the vasculature in the selective distribution of human chorionic gonadotropin to the preovulatory follicle. //Endocrinology, 1981, v. 109, N 2, p. 356-362.

Апоплексией гипофиза именуется острое патологическое состояние, возникающее по причинам стремительного разрастания опухолевого образования гипофиза, некротических процессов, разрыва либо кровоизлияния.

Патология дополняется интенсивной болезненностью головы, приступами тошноты, падением зрения. Гипофизарное поражение ведет к возникновению гипопитуиризма.

Из-за сдавливания мозговых сосудов развивается локальная ишемия.

Диагностирование заключается на КТ ГМ, а также выявлении концентраций тропных гормонов.

Терапия имеет полную зависимость от остроты состояния и распространенности процесса. При поражениях обширного типа выполняют гормонотерапию и хирургическое вмешательство в целях декомпенсации структур ГМ.

Апоплексия гипофиза относится к неотложным состояниям неврологической и эндокринной направленности, которое заключается в полостном кровоизлиянии области , а также сдавленностью тканей параселлярной зоны.

Патология мало распространенна, тем не менее, является угрожающим жизни пациента состоянием.

Прогрессирование апоплексии зачастую наблюдается у пациента с быстро развивающимися опухолевыми процессами гипофизарной зоны, при условии значительных либо гигантских образований. Зачастую диагностируются кровоизлияния в опухоль, но возможны и некрозы с ишемическими инфарктами.

Для справки!

Подобное неотложное состояние возникает приблизительно у 3% пациентов с диагностированными аденогипофизарными опухолями.

Факторы, способствующие развитию неотложного состояния

Неотложное состояние развивается у пациентов на фоне аденом соматотропных и кортикотропных, метастазирования в гипофизарные ткани и глиомами. Способствовать развитию апоплексию могут такие обстоятельства:

  1. Продолжительная терапия с антикоагулянтами. Использование значительных доз подобных препаратов при завышенных значениях АД способны выступать провоцирующим фактором развития кровоизлияний из сосудов ГМ.
  2. Лучевая терапия, которая становится причиной нарушения структуры и функционирования сосудистых каналов головного мозга и может приводить к кровотечениям и трофическим язвам.
  3. в гипофизарной зоне, которые стремительно разрастаются и приводят к нарушениям трофики этого отдела головного мозга по причине сдавливания ближайших тканей.
  4. Травмации, являющиеся следствием исследований гипофизарной области мозга – инвазивные методики способны приводить к нарушениям целостности структур и приводить к кровоизлияниям.
  5. Черепно-мозговые повреждения, которые представлены сотрясениями, ушибами и переломами костных черепных структур могут становиться причиной травм тканей либо приводить к возникновению опухолевых образований.

Также существуют варианты идиопатического кровоизлияния, которые привели к спонтанной апоплексии без каких-либо химических либо физических влияний в анамнезе.

Картина апоплексии имеет взаимосвязь со стремительным прогрессированием опухолевого процесса гипофизарной зоны ГМ. Это состояние характеризуется усилением местной микроциркуляции и разрастанием сосудистой сетки.

Химио- либо физическое влияние на новообразование становится провоцирующим фактором, приводящим к нарушению структуры капиллярных стенок и кровоизлияний в подпаутинную область.

Стремительное прогрессирование опухоли провоцирует сдавливание следующих мозговых структур:

Перечисленное обуславливает быстрое нарастание симптоматики, свойственной неврологии при гипофизарной апоплексии.

При сдавливании нервных волокон происходит нарастание проблем такого характера:

Наиболее часто при апоплексии наблюдается сохранение целостности и функциональности нейрогипофиза, при поражении аденогипофиза.

Симптоматические проявления

Симптоматические проявления неотложного состояния имеют зависимость от объемов опухоли, типа поражающего фактора и могут разниться от симптоматики слабо выраженной вплоть до расстройств сознания и комы.

Для справки!

Порядка 1/4 гипофизарных апоплексий не имеют клинических проявлений.

Значительное кровоизлияние в мозговую паренхиму сопровождается быстрым нарастанием симптоматики неврологического характера:

  • сильная болезненность головы;
  • позывы ко рвоте;
  • приступы тошноты.

При отсутствии медицинской помощи возникает отек ГМ и помутнение сознания, которое способно перерасти в кому.

При стремительном разрастании новообразования и смещении структур мозга происходит следующие:

  • падение зрение, может развиться слепота;
  • птоз;
  • нарушения зрительных полей.

Сжатие внутренней сонной артерии ведет к развитию ишемического инсульта и компрессии средней артерии – происходит утеря обоняния и прогрессирование аносмии.

При гипофизарных повреждениях проявляются расстройства эндокринного характера. При скромных объемах новообразования и малом кровоизлиянии концентрации тропных гормонов не изменяются и соответствуют физиологической норме.

При массивном кровоизлиянии наблюдается расстройство функций передней гипофизарной доли и прогрессирование гипопитуитаризма.

Такое состояние характеризуется следующими изменениями гормонального статуса пациента:

  • понижение АКТГ;
  • спад СТГ;
  • падение ТТГ;
  • уменьшение ;
  • снижение ;
  • понижение пролактиновой выработки.

Порядка в 5-10% клинических случаев развивается диабет несахарный, который дополняется полидипсией и полиурией.

Симптоматика осложнений

При значительных геморрагиях, поступлением крови в спинномозговую жидкость возникает прогрессирование менингеальной симптоматики, а также наблюдаются следующие проявления:

расстройства моторики;
ступор;
сопор;
коматозное состояние.

При кровоизлиянии в паренхиму срединных мозговых структур могут развиваться такие патологические состояния:

  • утеря сознания;
  • эпилепсия;
  • паралич.

При генерализированной травме аденогипофиза происходи развитие недостаточности всех тропных биологически активных соединений и понижению работоспособности периферических желез внутренней секреции.

Также присутствуют такие проявления:

  • падение показателей массы тела;
  • явная астенизация;
  • проявления ;
  • гипофизарная кома;
  • расстройства психоневрологического характера

Поражение центра дыхания и сердечнососудистого в продолговатом мозге провоцирует внезапный летальный исход.

Диагностирование

Разнообразие симптоматических проявлений и результатов лабораторной диагностики при гипофизарной апоплексии способствуют возникновению трудностей в постановке диагноза.

При подозрении на состояние обязательным является осмотр следующих специалистов:

  • невролог;
  • офтальмолог;
  • нейрохирург.

При предположениях этого патологического состояния требуется прохождение таких диагностических исследований:

  1. Лучевое. КТ ГМ с контрастом выступает ключевым диагностическим мероприятием, которое предоставляет возможность выявить зоны геморрагии, некрозы и новообразование любых параметров.

МРТ либо рентгенографическое исследование черепа боковой развертки делается при невозможности КТ.

Рентгенографическое исследование выявляет объемные новообразования зоны гипофизарной ямки, а МРТ обнаруживает зоны некроза и опухолевые образования скромных параметров.

  1. Определение гормонального статуса. Кровь исследуется на концентрации пролактина, значения кортизола, соматотропного и гонадотропных биологически активных соединений.
  2. Мониторинг состояния пациента. Осуществляется при использовании ОАМ, ОАК, теста ликвора, биохимии крови с определением концентраций мочевины, электролитов кальция и натрия, креатинина.

Дифференциация выполняется со следующими состояниями:

  • окклюзия сонной артерии;
  • разрыв аневризмы мозговых сосудов;
  • менингит бактериальный;
  • менингит вирусный;
  • инсульт;
  • менингоэнцефалит;
  • прочие внутричерепные образования.

В диагностических целях исследуют спинномозговую жидкость на сахар, белки крови и лейкоциты. Выполняют ангиографию сосудов внутри черепа.

Терапия

Лечебные мероприятия имеют зависимость от остроты состояния пациента, а также картины патологии. При недостаточности эндокринного характера выполняют гормонозаместительную терапию до нормализации состояния.

При усугублении симптоматики гипертензии внутричерепной, стремительном понижении зрительной функции, рисках возникновения отека ГМ, утере сознания выполняют оперативную декомпрессию ГМ.

Хирургическое вмешательство выполняется в экстренном варианте транскраниальным либо транссфеноидальным доступом.

В ходе операции выполняется забор биоматериала для гистологии, понижаю давление на значимые мозговые структуры и выполняют тотальное иссечение опухолевого образование, геморрагических и некротических масс.

По завершению вмешательства в качестве профилактической меры по отношению к отеку и внутричерепной гипертензии, выполняют постановку дренажа вентрикулярного.

В постоперационный период выполняют следующие манипуляции:

  • восстановление баланса кислот и щелочей;
  • нормализация электролитного баланса;
  • коррекция расстройств эндокринного характера.

В случае необходимости выполняют принудительное вентилирование легких.

Профилактические меры и прогноз

Прогноз в случае гипофизарной апоплексии имеет полную зависимость от типа и размеров поражения головного мозга.

В случае локализированного кровоизлияния при условии сохранения верного функционирования ГМ, при получении пациентом неотложной медицинской помощи, прогноз носит благоприятный характер.

В большей части вариантов получается нормализовать состояние и восстановить верные значения гормонов и электролитов.

В случае массивного кровоизлияния, стремительного роста опухолевого образования, дополненного сжатием структур мозга прогноз неблагоприятен – нарушение сознания, кома и летальный исход, но подобное состояние является крайне редким.

Профилактические меры, нацеленные на предотвращение развития гипофизарной апоплексии, заключаются в диспансерном учете эндокринолога и невролога.

Также требуется ежегодной прохождение КТ по отношению к вероятным новообразованиям ГМ.

Менструальный цикл продолжается от первого дня последней менструации до первого дня последующей. У большинства женщин цикл длится 28 дней, однако, нормальным может считать цикл 28 +/- 7 дней с кровопотерей 80 мл.

То есть, нормальным можно считать менструальный цикл продолжительностью 21 день от начала менструации до начала следующей менструации, 28 дней, 35 дней и все, что в промежутке от 21 до 35 дней. Главное здесь - регулярность, например, каждый цикл 28 дней, или 35 дней, а если один цикл продолжительностью 21 день, второй 28, третий 35, то это нарушенный цикл.

Поскольку в большинстве случаев у женщин отмечается менструальный цикл продолжительностью в 28 дней, мы будем рассматривать изменения, происходящие в организме, именно с учетом 28-дневного цикла. Однако эти изменения будут приложимы к регулярному циклу любой продолжительности из указанных выше.

Нормальный менструальный цикл делится на две основные фазы:

1. фолликулиновая (фолликулярная, секреторная) фаза - фаза роста фолликула, в период которой наступает созревание яйцевой клетки;

2. лютеиновая (пролиферативная) фаза - фаза желтого тела яичника, гормональная функция которого определяет "готовность матки" к восприятию оплодотворенного яйца.

При 28 дневном менструальном цикле фолликулярная и лютеиновая фазы равны, составляют 14 дней и разделены между собой дополнительно выделяемой фазой овуляции – выходом яйцеклетки из фолликула.

Гипоталамо-гипофизарно-яичниковый цикл .

Непосредственная регуляция репродуктивной функции осуществляется гипоталамусом, который имеет две зоны, связанные с функционированием репродуктивной системы:

  • гипофизотропную (медиобазальная область с аркуатными ядрами – осцилляторами цирхорального ритма РГ ЛГ) – отвечает за секрецию гонадотропинов
  • преоптико-супрахиазматическую – отвечает за рост фолликулов и повышение продукции эстрогенов (стимулирует)

Гипоталамус выполняет и другие функции, в число которых входит регуляция полового поведения, контроль за температурой тела, течением вегето-сосудистых реакций и многое другое. Каждая из этих функций ассоциирована с какой-то зоной гипоталамуса, представленной телами нейронов, образующих гипоталамическите ядра, сгруппированные в нейросекреторные системы: крупноклеточную нейросекреторную систему, продуцирующую окситоцин и вазопрессин и мелкоклеточную нейросекреторную систему (саму гипофизотропную зону), продуцирующую гипоталамические гормоны, которые стимулируют или ингибируют выделение соответствующих гормонов передней доли гипофиза. Наиболее изученные из них – система гонадотропин рилизинг гормонов и туберогипофизарная дофаминовая система.

Нейроны при помощи аксонов и синапсов контактируют с различными отделами мозга. Контакт гипоталамуса и гипофиза получил название гипоталамо-гипофизарной портальной системы, которая передает информацию от гипоталамуса к аденогипофизу и наоборот с током крови.

Передача информации от гипоталамуса к гипофизу осуществляется при помощи нейрогормона, который стимулирует продукцию обоих гонадотропинов - ЛГ (лютеинизирующего гормона) и ФСГ (фолликулостимулирующего гормона). Этот нейрогормон гипоталамуса получил название "рилизинг гормон лютеинизирующего гормона" (РГ ЛГ) или люлиберин.

Люлиберин стимулирует выделение ЛГ и ФСГ передней долей гипофиза. Обнаружить фоллиберин до настоящего времени не удалось. Поэтому в настоящее время принят один термин для гипоталамических гонадотропных либеринов – РГ ЛГ.

Нейросекрет (РГ ЛГ) по аксонам нервных клеток попадает в терминальные окончания и далее в портальную кровеностную систему, в которой ток крови, как уже отмечалось, направлен в обе стороны: как к гипоталамусу, так и к гипофизу, что позволяет осуществлять механизм обратной связи.

У человека РГ ЛГ синтезируется в аркуатных ядрах медиобазального гипоталамуса. Секреция генетически запрограммирована и происходит в определенном пульсирующем режиме с частотой примерно один раз в час. Этот ритм получил название цирхорального (часового).

Существует представление о двойном механизме гипоталамической регуляции тропных функций гипофиза – стимулирующем и блокирующем. Однако до настоящего времени не удалось показать наличие нейрогормона, ингибирующего секрецию гонадотропинов. Но двойной механизм гипоталамической регуляции тропных функций можно обнаружить на примере контроля секреции пролактина.

Гипоталамус - гипофизу дает импулс на выполнение синтеза и секреции им гонадотропных гормонов, т.е. аркуатные ядра медиобазальной части гипоталамуса в цирхоральном ритме выделяют в кровь люлиберин - рилизинг гормон лютеинизирующего гормона. Дя выполнения какого-то действия гормон должен соединится с рецептором. Pилизинг гормон лютеинизирующего гормона и соединяется с рецепторами клеток гипофиза, запуская в них каскад реакций, конечным итогом которых является выделение тропных гормонов. Поскольку мы расматриваем половую систему, то соответственно, конечнмы итогом будет выделение гипофизом гонадотропных гормонов - ЛГ и ФСГ.

На самом деле гипофиз, как железа внутренней секреции, выделяет много гормонов. В зависимости от морфологических и функциональных показателей выделяют два основных отдела гипофиза:

1. переднюю долю – аденогипофиз (является железой внутренней секреции) и

2. заднюю долю – нейрогипофиз (не является железой внутренней секреции)

Нейрогипофиз секретирует, но не синтезирует два пептидных гормона: вазопрессин (антидиуретический гормон) и окситоцин. Эти гормоны синтезируются супраоптическими и паравентрикулярными ядрами гипоталамуса, откуда переносятся в нейрогипофиз по аксонам, там депонируются и при известных физиологических условиях выделяются в кровь.

Аденогипофиз (передняя доля гипофиза) синтезирует и секретирует 6 тропных гормонов: ЛГ, ФСГ, пролактин (лактотропный гормон - ЛТГ), соматотропный гормон (СТГ), адренокортикотропный гормон (АКТГ), тиреотропный гормон (ТТГ).

Гонадотропные гормоны – ЛГ и ФСГ – не являются специфичными для пола и стимулируют функцию как мужской, так и женской половой железы. Мы с вами будем рассматривать только стимуляцию функции женской половой железы, что, собственно, и является регуляцией менструального цикла.

Все гонадотропные гормоны оказывают влияние на рост и развитие фолликулов, образование и функцию желтого тела. Это является необходимым условием для возникновения беременности. Пролактин, правда, больше считается метаболическим гормоном, чем гонадотропином.

Биологические эффекты гонадотропинов достаточно разнообразны. Фолликулостимулирующий гормон (ФСГ) стимулирует рост и созревание фолликула. Синтез эстрогенных гормонов определяется влиянием ФСГ и ЛГ. Созревание яйцевой клетки (мейоз) связано с влиянием эстрогенов. ЛГ стимулирует возникновение желтого тела и его дальнейшее развитие. Образование гормона желтого тела - прогестерона - находится под контролем ЛГ и пролактина (ЛТГ).

Биосинтез гонадотропинов осуществляется под действием люлиберина - гормона гипоталамуса. Синтезированные гормоны гипофиза (ЛГ, ФСГ) депонируются в виде гранул в клетке и выделяются под совместным действием гормона гипоталамуса (оптимальная импульсная частота ГРГ-стимуляция) и стероидных гормонов яичника (обратная связь). При любых отклонениях в работе этих систем уровень гонадотропинов изменяется.

Яичник в позднюю лютеиновую фазу менструального цикла получает от гипофиза сигнал ФСГ - начать рост и созревание фолликула. Этот сигнал (определенная концентрация ФСГ в крови) присутствует и в раннюю фолликулиновую фазу, после которой начинается снижение концентрации ФСГ в связи с увеличением концентрации эстрадиола, продуцируемого яичником (механизм обратной связи - яичник как бы отчитывается перед гипофизом, что его приказ выполнил). Снижение концентрации ФСГ к середине цикла прерывается небольшим его пиком, совпадающим с пиком ЛГ. Недавно из фолликулярной жидкости выделен ингибин – вещество, оказывающее ингибирующее действие на секрецию ФСГ.

ФСГ стимулирует развитие фолликула, рост которого сопровождается определенным уровнем секреции эстрогенов. Максимальный уровень секреции эстрогенов, наблюдаемый ко времени овуляции, оказывает тормозящее влияние на образование ФСГ, что меняет соотношение между ФСГ и ЛГ в пользу последнего. Концентрация ЛГ увеличивается и по достижении оптимальных отношений между ФСГ и ЛГ (предовуляторный пик ЛГ) происходит овуляция.

Постепенное повышение ЛГ наблюдается в позднюю фолликулиновую фазу, далее наблюдается резкий (иногда двухфазный) предовуляторный пик и снижение в течение лютеиновой фазы (связано с концентрацией прогестерона).

ЛГ стимулирует образование и развитие желтого тела, а комплексное влияние ЛГ и ЛТГ приводит к образованию и секреции желтым телом прогестерона.

Нарастание выше критических показателей уровня прогестерона приводит к торможению продукции ЛГ, вследствие чего растормаживается образование ФСГ. Цикл повторяется (не забываем, что цикл у нас от начала менструации до начала очередной менструации).

Овариальные стероиды по механизму обратной связи оказывают модулирующее влияние на гипоталамус и гипофиз. Эстрадиол увеличивает частоту импульсов ГРГ с соответствующим увеличением импульсов секреции ЛГ. Прогестерон же, наоборот, уменьшает частоту пиков ЛГ в плазме, что, по-видимому, связано с урежением импульсов ГРГ. Это соответствует изменениям секреции ЛГ в лютеиновую фазу.

В первую фазу цикла в яичнике под действием ФСГ происходит рост и созревание фолликулов, которые синтезирует и продуцирует эстрогены,

во вторую фазу цикла (под действием ЛГ), после овуляции образуется желтое тело, которое продуцирует прогестерон. В яичниках еще частично осуществляется и синтез андрогенов. (Более подробно см. яичниковый цикл). При увеличении концентрации этих гормонов в сыворотке крови (т.е. на периферии), по механизму обратной связи наступает снижение концентрации гонадотропинов.

Биологические эффекты стероидов очень разнообразны. Наиболее выраженные из них регистрируются даже самой женщиной. Регистрируемый женщиной эффект - менструация - как отражение наиболее выраженных циклических изменений в матке, получивших название маточного цикла.

Маточный цикл

Маточный цикл находится в прямой зависимости от яичникового и характеризуется закономерными изменениями эндометрия под действием половых стероидов. В первую половину менструального цикла яичник продуцирует нарастающее количество преимущественно эстрогена - женского полового гормона. Под влиянием эстрогена происходит пролиферация (прирост, увеличение толщины) функционального слоя эндометрия - фаза пролиферации в матке, соответствующая фолликулиновой фаза в яичнике.

Кроме этого эстрогены влияют и на рецепторы клеток других органов-мишеней, например, на клетки эпителия влагалища, стимулируя ороговение многослойного плоского эпителия. На этом эффекте основан один из методов опеределения эстрогенной насыщенности организма - кольпоцитология (мазок на КПИ - кариопикнотический индекс)

Фаза пролиферации заканчивается около 14 дня при 28-дневном менструальном цикле. В это время в яичнике происходит овуляция и последующее образование менструального желтого тела.

После овуляции фолликул дифференцируется в желтое тело. Желтое тело выделяет большое количество прогестерона, под влиянием которого в эндометрии, подготовленном эстрогенами, наступают морфологические и функциональные изменения, свойственные фазе секреции - лютеиновой фазе. Превращение эндометрия фазы пролиферации в фазу секреции называют дифференциацией или трансформацией.

Прогестерон также вызывает легкий гипертермический эффект (повышение температуры). На этом основано опеределение двухфазности менструального цикла (определение базальной температуры).

Если не произошло оплодотворение яйцеклетки и имплантации бластоцисты, то в конце менструального цикла наступает регресс и гибель менструального желтого тела, что приводит к падению титра овариальных гормонов, поддерживающих кровенаполнение эндометрия. В связи с этим запускаются системы, вызывающие изменение в тканях эндометрия (повышение проницаемости сосудистой стенки, нарушение кровообращения (ангиоспазм) и деструкция эндометрия, выделение эндометриальными гранулоцитами релаксина и расплавление волокон, лейкоцитарная инфильтрация стромы компактного слоя, возникновение очагов кровоизлияний и некрозов, повышение белка и фибринолитических ферментов в ткани эндометрия), приводящие к менструальному отторжению слизистой оболочки, т.е. наступает менструация.

Менструальная кровь не подвергается свертыванию. Остановка кровотечения происходит вследствие сокращения матки, тромбоза сосудов и эпителизации раневой поверхности за счет разрастания клеток базального эпителия.

Регенерация (восстановление слизистой) обусловлена эстрогенами яичника, образующимися в фолликуле, развитие которого начинается после гибели желтого тела. Регенерация начинается раньше полного отторжения функционального слоя. Одновременно с эпителизацией начинается фаза пролиферации. Цикл повторяется.

По состоянию функционального слоя эндометрия можно судить о функционировании яичников и гипоталамо-гипофизарной системы в целом. Для этого проводится биопсия эндометрия - диагностическое выскабливание с гистологическим исследованием соскоба эндометрия ориентируясь по дням менструального цикла, соответствующим фазам маточного цикла.

Необходимо помнить еще, что кроме гонадотропных гормонов,в регуляции менструального цикла принимают участие и другие гормоны , т.к. в организме имеется функциональная взаимозависимость между многими железами внутренней секреции. Эти связи особенно отчетливо проявляются между гипофизом, яичником, надпочечником и щитовидной железой. У женщин с выраженной гипо- и гиперфункцией щитовидной железы отмечается нарушение менструальной функции, а при крайних степенях данной патологии менструальный цикл может оказаться полностью подавленным.

В очагах эндемического зоба выявлена определенная закономерность между появлением эутиреоидного зоба и временем появления месячных. У большого числа девочек появление зоба совпало по времени с пубертатным периодом. Среди женщин с эутиреоидным зобом нарушения менструальной функции наблюдались в 31% (Н. С. Бакшеев). Экспериментальные исследования с применением радиоактивного йода (I131) показали, что эстрогенные гормоны и хориальные гонадотропины стимулируют функцию щитовидной железы. Экскреция общих эстрогенов понижена у женщин с эутиреоидным зобом по сравнению с женщинами, у которых зоба нет.

Доказано, что снижение выделения гипофизом ФСГ сопровождается повышением секреции АКТГ и ЛГ. Если понижается секреция этих гормонов, возникает повышение уровня выхода ФСГ. Эти данные могут указывать на зависимость между функцией коры надпочечника и функцией яичника.

Высокие уровни экскреции пролактина (ЛТГ), стимулирующего лактацию молочной железы, тормозят выделение тропных гормонов первой фазы менструального цикла и развитие фолликула. У лактирующих женщин длительное время отсутствуют месячные и в этот период исключено возникновение беременности (до начала очередной овуляции).

Билет№16(3)

СД - заболевание , обусловленное абсолютной или относительной недостаточностью инсулина.

Этиология СД:


Классификация СД:

СД - заболевание, обусловленное абсолютной или относительной недостаточностью инсулина.

Этиология СД:

1. генетические нарушения функции и количества бета - клеток, синтез ими аномального инсулина
2) факторы внешней среды (вирусы, аутоиммунные реакции, избыточное потребление углеводов, ожирение).

Классификация СД:

1. СД I типа (инсулинзависимый, проявляется деструкцией бета-клеток панкреатических островков с абсолютной инсулиновой недостаточностью)

2. СД II типа (инсулиннезависимый, в основе - резистентность периферических тканей к инсулину)

3. Специфические типы диабета: генетические дефекты в действии инсулина; необычные формы иммуноопосредованного диабета; гестационный СД (диабет беременных).

Изменения в органах при сахарном диабете:

а) поджелудочная железа: уменьшаются количество и размеры панкреатических островков; в панкреатических островках выявляется лейкоцитарная инфильтрация в виде лимфоидной инфильтрации как внутри островков (инсулит), так и вокруг их; склероз и фиброз островков; поджелудочная железа уменьшается в размерах, возникает ее липоматоз и склероз.

б) печень: увеличена; жировая дистрофия гепатоцитов; гликоген в печеночных клетках не выявляется.

в) почки: диабетический гломерулонефрит и гломерулосклероз; пролиферация мезангиальных клеток в ответ на засорение мезангия продуктами обмена и иммунными комплексами с развитием в финале гиалиноза мезангия и гибели клубочков (синдром Кимельстила-Уильсена).

г) поражение двигательных и чувствительных нервов нижних конечностей (периферическая нейропатия): повреждение шванновских оболочек нервов, разрушение миелина и повреждением аксонов.

Осложнения и причины смерти при СД:

1. диабетическая кома
2. гангрена конечности
3. инфаркт миокарда
4. слепота (в результате микро- и макроангиопатии)
5. диабетическая нефропатия (почечная недостаточность)
6. присоединение вторичной инфекции (пиодермия, фурункулез, сепсис, обострение туберкулеза).

Диабетическая эмбриопатия – поражения зародыша в период до формирования плаценты, проявляющиеся ВПР отдельных органов и систем, тератомами (эмбриоцитомами), спонтанными абортами.

Диабетическая фетопатия - заболевание плода, обусловленное преддиабетом и диабетом матери.

Патогенез: изменения уровня глюкозы в крови матери - ответная реакция у плода - гипертрофия инсулярного аппарата с последующим истощением его и дистрофией бета-клеток, а также синдром Иценко-Кушинга.

Морфология диабетической фетопатии:

МаСк: склонность к рождению крупных плодов - с массой тела 4-6 кг; тело плода покрыто обильной сыровидной смазкой, кожа багрово-синюшная с петехиями, отеки мягких тканей туловища и конечностей; признаки незрелости (отсутствие ядра окостенения бедра или уменьшение его размеров); гепато- и кардиомегалия.

МиСк: увеличение бета-клеток в поджелудочной железе, их дегрануляция, вакуолизация и пикноз ядер, истощении секреции; вакуольная дистрофия, микронекрозы в миокарде; отложение гликогена в извитых канальцах почек; склероз в сосудах МЦР; гиалиновые мембраны в легких (из-за дефицита сурфактанта и нарушений липидного обмена)

Причины смерти:

1. асфиксия плода или новорожденного
2. гипогликемия, наступающая в результате родового стресса.

Если кратко описать этот механизм, в гипоталамусе вырабатывается гонадотропин-рилизинг гормон (ГнРГ), который стимулирует выработку ЛГ и ФСГ в гипофизе. Гонадотропины инициируют процесс созревания ооцита в яичнике. Параллельно с этим в яичниках секретируются гормоны, которые влияют на эндометрии, подготавливая его к имплантации. В дополнение к этому яичниковые гормоны по принципу обратной связи воздействуют на гипофиз и гипоталамус, регулируя секрецию гонадотропинов во время менструального цикла. Весь этот комплекс взаимодействий подробно рассматривается ниже.

Гипоталамо-гипофизарная система

ГнРГ является центральным инициатором репродуктивной функции. ГнРГ является 10-амино-кислотным пептидом с коротким периодом полувыведения в 2-4 минуты. Он образуется в специальных секретирующих нейронах, которые появляются в процессе развития в обонятельной пластине и затем мигрируют в медиабазальный гипоталамус. Эти нейроны располагаются в медиальном возвышении и секретируют ГнРГ в определенном импульсном режиме («импульсный генератор») в портальные сосуды, по которым ГнРГ достигает гонадотрофы, находящиеся в аденогипофизе. ГнРГ связывается с рецепторами, относящимися к суперсемейству G-протеин-связанных семидоменных трансмембранных рецепторов. 1,4,5-трифосфатаза и диацил-глицерол играют роль вторичных мессенджеров для ГнРГ. Частота пульсации секреции ГнРГ регулируется синтезом и секрецией гипофизарных гонадотропинов.
Во время фолликулярной фазы медленное высвобождение ГнРГ - каждые 90-120 минут - активирует секрецию ФСГ. В ответ на стимуляцию ФСГ, созревающий в яичнике фолликул секретирует эстрадиол. Этот гормон осуществляет негативную обратную связь и ингибирует высвобождение ФСГ опосредованным снижением продукции ГнРГ через нейроны, содержащие гамма-аминобутировую кислоту, в дополнение к этому, возможно, имеется прямое воздействие на гипофиз. Эстрадиол участвует в положительной обратной связи, которая увеличивает частоту пульсации ГнРГ до 60 мин в фолликулярной фазе, а также непосредственно стимулирует секрецию ЛГ гипофизом. ЛГ стимулирует яичники, благодаря чему происходит дальнейшее увеличение секреции эстрадиола. Хотя в этот момент не происходит быстрого изменения пульсации ГнРГ, эстрадиол и другие регуляторные механизмы увеличивают чувствительность гипофиза к ГнРГ. Это повышение чувствительности приводит к быстрому увеличению продукции ЛГ (пику ЛГ), который стимулирует овуляцию. После овуляции разорванный фолликул (желтое тело) вырабатывает прогестерон. Этот гормон участвует в негативной обратной связи, увеличивая эндогенную опиоидную активность и, возможно, непосредственно снижая частоту пульсации ГнРГ до 1 импульса за 3-5 часов. Таким образом повышается синтез ФСГ в период лютеиново-фолликулярного перехода. По мере снижения концентрации прогестерона увеличивается частота пульсации ГнРГ, что способствует выбросу ФСГ.

Роль гипофиза

Гонадотрофы расположены в аденогипофизе и составляют приблизительно10% от всего пула гипофизарных клеток. Эти клетки синтезируют и секретируют ЛГ и ФСГ. Эти гормоны, а также тиреотропный (ТТГ) и хорионический гонадотропин человека (ЧХГ) принадлежат к семейству глико-протеиновых гормонов. Гонадотропины - функциональные гетеродимеры и состоят из альфа- и бета-субъединиц. Последовательность аминокислот альфа-субъединицы идентична для всех гликопротеиновых гормонов, в то время как бета-субъединица характеризуется различным аминокислотным составом и содержит уникальную информацию.
Синтез ФСГ и ЛГ чаще всего происходит в одних и тех же клетках. Секреция ФСГ тесно связана с экспрессией бета-субъединицы. Существует предположение о том, что в гонадотрофах находится минимальный запас ФСГ и большая часть его секретируется по конституциональному пути. Секреция ЛГ происходит по-другому: вначале ЛГ накапливается в органеллах, а затем под действием триггерного фактора осуществляется его высвобождение (регулируемый путь). Различные олигосахариды на бета-субъединице, возможно, обеспечивают внутриклеточную сортировку, в результате чего возможны различные механизмы секреции.
Дифференциальная экспрессия генов, которая ведет к продукции и высвобождению гонадотропинов клетками аденогипофиза зависит от ГнРГ и гормонов яичников через механизмы обратной связи. Замедление частоты пульсации ГнРГ усиливает экспрессию бета-субъединицы ФСГ и увеличивает амплитуду выработки Л Г. И наоборот, увеличение частоты пульсации ГнРГ активирует экспрессию бета-субъединицы ЛГ, усиливая высвобождение ФСГ. В результате этого амплитуда ЛГ снижается, в то время как его средняя концентрация в плазме увеличивается. Таким образом, влияние половых стероидов на пульсацию ГнРГ косвенно контролирует продукцию гонадотропинов аденогипофизом.
Во внутригипофизарной сети несколько механизмов играют важную роль в синтезе и секреции гонадотропинов. Гонадотрофы синтезируют и секретируют пептиды, входящие в семейство трансформирующих ростовых факторов (ТРФ). Активин является местным регулирующим протеином, который вовлечен в контроль за функцией гонадотрофов. Медленная пульсация ГнРГ усиливает синтез активина, который в свою очередь усиливает транскрипцию ФСГ. Быстрая пульсация ГнРГ стимулирует выработку фоллистатина, другого ТРФ-родственного протеина, который связывает активин. Таким образом снижается биодоступность активина и соответственно уменьшается синтез ФСГ. Дополнительно к местным регулирующим механизмам на экспрессию гонадотропинов влияют яичниковые трансформирующие факторы роста, такие как ингибин.

Роль яичников

Яичники тесно связаны с процессом регуляции менструального цикла через механизмы обратной связи. Помимо этого в яичниках содержится внутренняя сеть, включающая факторы, которые синтезируются локально и выступают как паракринные, так и аутокринные регуляторы гонадотропной активности. К интраовариальным регуляторам относятся семейство инсулиноподобных факторов роста (ИРФ), суперсемейство ТРФ и семейство эпидермальных ростовых факторов (ЭРФ). Более того, эти факторы участвуют в координации процесса развития фолликулов, стероидогенеза и овуляции.
Менструальный цикл яичников включает фолликулиновую и лютеиновую фазы. Фолликулиновая фаза характеризуется ростом доминантного фолликула и овуляцией. Обычно она составляет 10-14 дней. Однако эта фаза может значительно варьировать во времени и зависит от продолжительности менструального цикла у овулирующей женщины. Лютеиновая фаза начинается сразу после овуляции и представляет собой период, когда яичники вырабатывают гормоны, способные поддержать возможную имплантацию. Продолжительность этой фазы относительно постоянна и составляет в среднем 14 дней (12-15 дней). Фазы менструального цикла будут описаны более подробно в следующем разделе.
Примордиальные фолликулы являются основными репродуктивными единицами, включающими пул «спящих» ооцитов. Морфологически они состоят из первичного ооцита, окруженного одним слоем сквамозных гранулезных клеток и базальной мембраной. У них нет кровоснабжения. Эти примордиальные фолликулы развиваются между 6-м и 7-м месяцем гестации и представляют из себя полный запас яичниковых фолликулов.
Фоликулярное развитие начинается с перехода «спящего» примордиального фолликула в фазу роста. Точные механизмы, контролирующие первичное вступление примордиального фолликула в фазу роста, до сих пор до конца не исследованы. Высказывается предположение о том, что пул оставшихся фолликулов находится под постоянным тоническим «ингибирующим» контролем. Первичный процесс созревания приводит к индукции роста некоторых примордиальных фолликулов, при этом соседние фолликулы остаются неактивными в течение месяцев и даже лет. Предполагается, что постепенная активизация фолликулов представляет из себя длительный процесс, который начинается сразу после формирования пула эмбриональных клеток и заканчивается с истощением фолликулярного аппарата. Этот сложный процесс не зависит от гонадотропинов. На основании нескольких исследований было высказано предположение о том, что за включение примордиального фолликула в процесс развития отвечает внутрияичниковая сигнальная система, включающая некоторых членов семейства ТРФ. Также известно, что для полноценного роста и развития примордиального
фолликула необходим тесный клеточный контакт с клетками гранулезы и ооцитом. Эти клетки через щелевые мостики семейства коннексинов передают к и от ооцитов различные факторы, питательные вещества и продукты распада.
Существует теория, что ооцит сам влияет на свою гибель, секретируя различные факторы. Этот процесс включает выработку двух ростовых факторов, относящихся к ТРФ-β которые вырабатываются ооцитами в начале развития фолликула, ростовой дифференцирующий фактор (РДФ)-9 и костный морфогенный белок (КМБ)-15. В исследовании на мышах с выключенными рецепторами было показано, что ооцит активирует пролиферацию клеток гранулезы через эти ростовые факторы, в ответ на это клетки гранулезы вырабатывают факторы (например, фоллистатин, kit-лиганд), которые снижают ингибирующее влияние (например, ингибина А, мюллеровой ингибирующей субстанции) и способствуют стимуляции роста ооцита.
К настоящему времени описаны несколько местных факторов, а в будущем будет выявлено их большое количество. Продолжающееся исследование этих ростовых факторов и гормонов поможет определить физиологию процесса активизации примордиальных фолликулов. Количество терминальных клеток ограничено, и каждое полноценное созревание фолликулов уменьшает запас клеток. Любые заболевания, которые приводят к уменьшению терминальных клеток или ускоряют активизацию фолликулов, могут привести к раннему истощению запаса фолликулов и, таким образом, к преждевременному прекращению репродуктивной функции.
Развитие первичного фолликула является первым этапом фолликулярного роста. Первичный фолликул отличается от примордиального несколькими особенностями. Ооцит начинает расти. Частью процесса роста является образование прозрачной зоны (zona pellucida). Она представляет из себя толстый слой гликопротеинов, которые, скорее всего, синтезируются ооцитом. Этот слой полностью окружает ооцит и является барьером между ооцитом и клетками гранулезы. Он выполняет ряд функций, необходимых для защиты ооцита и оплодотворения. В итоге клетки гранулезы проходят ряд морфологических изменений от сквамозных до кубических. Этот этап развития может длиться до 150 дней.
Переход к вторичному фолликулу происходит при достижении ооцитом максимального размера (120 нм в диаметре), пролиферации клеток гранулезы и появления клеток теки. Точный механизм появления клеток теки изучен недостаточно, однако предполагается, что они образуются из прилежащей мезенхимы яичников (фибробласты стромы) по мере продвижения развивающегося фолликула в мозговое вещество яичника. Развитие этого слоя дает возможность формироваться внутренней и наружной теке. С развитием клеток теки фолликул получает кровоснабжение, несмотря на то что клетки гранулезного слоя остаются не васкуляризироваными. Клетки гранулезы вторичного фолликула вырабатывают рецепторы к ФСГ, эстрогенам и андрогенам. Эта фаза может занимать до 120 дней, возможно, это происходит из-за длительного периода удвоения клеток гранулезы (>250 часов).
Дальнейшее развитие приводит к формированию третичного фолликула, или ранней антраль-ной фазе. Эта фаза характеризуется образованием антрума, или полости в фолликуле. Антральная жидкость содержит стероиды, белки, электролиты, протеогликаны, а также ультрафильтрат, который образуется при диффузии через базальную пластину. Для этой фазы также характерна дальнейшая дифференцировка клеток теки. Субпопуляции тека-интерстициальных клеток развиваются в пределах внутренней теки, содержат рецепторы к ЛГ и клетки обеспечивают стероидогенез. Затем начинается дифференцировка клеток гранулезы. Начиная с базальной пластины, клетки делятся на слои следующим образом: мембрана, периантральный слой, яйценосный бугорок и corona radiata. На процесс развития влияет выработка ФСГ и не идентифицированные сигналы, получаемые от ооцита. Предполагается, что ооцит-зависимый фактор (РДФ-9) является неотъемлемым компонентом этого процесса. Изменение концентрации РДФ-9 влияет на формирование того или иного слоя. Кроме того, клетки гранулезы в ответ на стимуляцию ФСГ вырабатывают активин, который является членом семейства ТРФ. Активин состоит из двух вариантов β-субъединиц: βА и βВ, которые соединены между собой дисульфидными мостиками. Различные комбинации этих субъединиц дают начало разным активинам (активин А [βА, βА], АВ [βА, βВ] или ВВ [βВ, βВ]). Скорее всего, активины не являются гормонами, так как концентрация их в крови постоянна и не зависит от менструального цикла и его свободная фракция в крови не определяется. Основная роль активинина заключается в активации рецепторов к ФСГ в клетках гранулезы и усилении фолликулогенеза.
Рост фолликула в ранней антральной фазе осуществляется в медленном и постоянном темпе. Фолликулы достигают диаметра 400 нм. Основным фактором роста фолликула на данном этапе является ФСГ-стимулированные митозы клеток гранулезы. До этого момента выживание и рост фолликулов в основном не зависят от гонадотропинов. В препубертате и у женщин, принимающих контрацептивы, до этой стадии фолликулы находятся на разных этапах развития. На этом этапе фолликулогенеза для их дальнейшего роста и развития необходимо наличие ФСГ. Если не будет ФСГ в достаточном количестве, фолликулы подвергнутся инволюции.
Морфологическая единица - фолликул, состоящий из клеток теки и гранулезы, является еще и самостоятельной гормональной единицей, ответственной за продукцию эстрогенов. Клетки теки и гранулезы находятся под непосредственным влиянием ЛГ и ФСГ соответственно. Гонадотропины повышают продукцию цАМФ и активность транскрипционного фактора ФС-1 в соответствующих клетках. В клетках теки под воздействием Л Г происходит увеличение ЛГ-рецепторов на поверхности клеток и увеличение экспрессии и активности StAR, P450scc, ЗР-ГСД-П, Р450с17, необходимых для усиления продукции андрогенов. ФСГ усиливает продукцию клетками гранулезы ароматазы и 17р-ГСД.
Андрогены могут формироваться по одному из двух путей: Д5 путь, при котором в качестве предшественника используется ДГЭА, и Д4 путь - синтез андрогенов из 17-ОН-прогестерона. Однако у человека Д4 путь представлен минимально. Это происходит из-за того, что 17,20-лиаза имеет гораздо большее сродство к 17-ОН-прегненолону, чем к 17-ОН-прогестерону. Таким образом, основным предшественником половых гормонов у человека является ДГЭА.
Андрогены, в основном андростендион, проходят через базальную пластину фолликула и становятся основным предшественником эстрогенов. Путь биосинтеза эстрадиола определяется типом 17р-ГСД. У человека было выявлено семь типов 17Р-ГСД, каждый из которых имеет сродство к определенным стероидам. В клетках гранулезы в основном представлена 17р-ГСД типа 1, которая редуцирует молекулу эстрона, превращая ее в эстрадиол. 17р-ГСД типа 3 в основном обнаруживается в клетках Лейдига и способствует переходу андростендиона в тестостерон. 17Р-ГСД типа 5 находится в клетках теки и также способствует переходу андростендиона в тестостерон. Таким образом, основной путь биосинтеза эстрадиола осуществляется в клетках гранулезы при ароматизации андростендиона в эстрон, при участии ароматазы и последующей редукции молекулы эстрона в эстрадиол при участии 17Р-ГСД1 типа 1.

{module директ4}

Необходимость участия эстрадиола в фолликулогенезе, а также механизмы положительной и отрицательной обратной связи с гипофизом достаточно изучены. Однако роль эстрогенов в местном процессе созревания и роста фолликула остается противоречивой. Совершенно очевидно, что эстрогены являются синергистами с ФСГ в фолликулярной фазе, так как они увеличивают экспрессию рецепторов к ЛГ и ФСГ, стимулируя пролиферацию клеток гранулезы, а также усиливают активность ароматазы. На основании исследования, проведенного на мышах с выключенной активностью ароматазы, было высказано предположение о местной роли эстрогенов. Первично у этих мышей были большие антральные фолликулы, однако через один год не было обнаружено ни антральных, ни вторичных фолликулов, а примордиальные подверглись атрезий. Однако ооциты этих мышей in vitro способны созревать и формировать бластоцисту. Очевидно, что рецепторы к эстрогенам имеются как в клетках гранулезы, так и в клетках теки. Исследования на мышах с выключенными α-эстрогеновыми рецепторами показали, что эти мыши бесплодны и у них нет граафовых пузырьков. При этом мыши с выключенными β-эстрогеновыми рецепторами способны к деторождению. У людей встречаются случаи развития фолликулов при отсутствии в организме секреции эстрадиола. Такой случай наблюдался у женщины с дефицитом CYP 17а, у которой при введении гонадотропинов был отмечен рост фолликула. При экстракорпоральном оплодотворении был отмечен рост эмбриона, однако, к сожалению, беременность не наступила.
Внутриовариальные факторы играют решающую роль как в фолликуло- так и в стероидогенезе. Ооцит-продуцируемый фактор РДФ-9 выделяется в течение всего процесса фолликулогенеза. Считается, что этот фактор не только запускает дифференцировку клеток гранулезы, но также обладает стимулирующим влиянием на клетки теки и ингибирующим на формирование клеток желтого тела. Исследования in vitro показали, что ИРФ-1 и ИРФ-2 усиливают пролиферацию клеток гранулезы и секрецию эстрадиола. Однако было высказано предположение о том, что в процессе созревания фолликула доминирующую роль играет скорее ИРФ-2, нежели ИРФ-1. Этот факт может объясняться отсутствием экспрессии ИРФ-1 в клетках гранулезы доминантного фолликула. Более того, у женщин с синдромом Ларона (отсутствие ИРФ-1) возможна овуляция при стимуляции гонадотропинами. Этот факт говорит о том, что наличие ИРФ-1 не является необходимым фактором фолликулогенеза.
Клетки гранулезы вырабатывают другие гормоны, которые регулируют фолликулогенез: например, синтезируют α-субъединицу, которая соединяется с β-субъединицей и образует гетеродимеры, известные как ингибин А (αβА) или ингибин В (αβВ). Роль ингибина в фолликуло- и стероидогенезе непрямая, за счет подавления продукции ФСГ в гипофизе. Концентрации ингибина А и В зависят от менструального ритма. Уровень циркулирующего ингибина А возрастает в поздней фолликулярной фазе и сохраняется высоким в тенение всей лютей-новой, в то время как концентрация ингибина В зеркально отражает концентрацию ФСГ. Несмотря на то что уровень ингибина В в сыворотке возрастает соответственно увеличению размера клеток гранулезы в ответ на стимуляцию ФСГ, фолликулярная концентрация ингибина В не зависит от размера фолликула. Было высказано предположение о том, что концентрация в сыворотке ингибина В отражает объем клеток гранулезы и может служить индикатором роста овариального резерва. Так как ингибин В является первичным ингибитором продукции ФСГ гипофизом в фолликулярной фазе при отсутствии эстрадиола, измерение базального уровня ФСГ может быть непрямым маркером овариального резерва.
Антральная фаза характеризуется интенсивным ростом фолликула (1-2 мм/день) и зависит от концентрации гонадотропинов. В ответ на стимуляцию ФСГ антральный фолликул быстро растет и достигает 20 мм в диаметре преимущественно за счет скопления антральной жидкости. Тека-клетки продолжают дифференцироваться в интерстициальные, которые продуцируют растущее количество андростендиона для последующей его ароматизации в эстрадиол. Клетки гранулезы продолжают дифференцироваться друг от друга. Мембранный слой под воздействием ФСГ приобретает рецепторы к ЛГ. Это отличает мембранный слой от кумулятивного слоя, в котором нет рецепторов к ЛГ. Окончательное развитие в зрелый фолликул представляет из себя избирательный процесс, в результате которого чаще всего получается один доминантный фолликул, готовый к овуляции.
Процесс отбора начинается в середине лютеиновой фазы предыдущего цикла. Повышение эстрогенов вызывает преовуляторное усиление ФСГ-активности внутри фолликула, при этом по принципу обратной связи тормозит выработку ФСГ гипофиза. Снижение гипофизарной секреции ФСГ приводит к прекращению гонадотропиновой поддержки меньших антральных фолликулов, приводя к их атрезий. Несмотря на снижение концентрации ФСГ, доминантный фолликул продолжает расти, увеличивая массу гранулезных клеток с большим количеством рецепторов к ФСГ. Повышенная васкуляризация клеток теки обеспечивает избирательную доставку ФСГ к доминантному фолликулу, несмотря на снижение концентрации ФСГ в сыворотке. Повышенный уровень эстрогенов в фолликуле облегчает активизацию рецепторов ЛГ клеток гранулезы фолликулостимулирующим гормоном, что позволяет фолликулу прореагировать на овуляторный выброс Л Г. В отсутствие эстрогенов рецепторы к ЛГ на поверхности клеток гранулезы не развиваются.
Выброс ЛГ является абсолютным условием овуляции и созревания ооцита. Усиленная выработка ЛГ в середине цикла происходит из-за повышенной чувствительности гипофиза к ГнРГ. Сенситизация обусловлена положительной обратной связью между экспоненциальным ростом концентрации эстрогенов и, возможно, ингибина А. Результатом этого выброса становится возобновление мейоза I в ооците с высвобождением полярного тела непосредственно накануне овуляции. Есть основания предполагать, что клетки гранулезы секретируют ингибитор созревания ооцитов (ИСО), который взаимодействует с яйценосным бугорком и таким образом блокирует процесс мейоза в течение фолликулогенеза. Теоретически считается, что ИСО оказывает свое блокирующее действие посредством высвобождения цАМФ в яйценосном бугорке, который проникает в ооцит и останавливает мейотическое созревание. Выброс ЛГ превышает блокирующее действие ИСО, уменьшая концентрацию цАМФ и увеличивая внутриклеточную концентрацию кальция, позволяя возобновить мейоз.
Непосредственно перед овуляцией увеличивается продукция прогестерона, что, возможно, отчасти и является причиной пика ФСГ в середине цикла. Пик ФСГ стимулирует продукцию адекватного количества рецепторов к ЛГ на клетках гранулезы. ФСГ, ЛГ и прогестерон индуцируют экспрессию протеолитических ферментов, которые разрушают коллаген в фолликулярной стенке и повреждают ее. Увеличивается продукция прогестерона, благодаря чему, возможно, происходит сокращение гладкомышечных клеток, которые усиливают выталкивание ооцита.
Выброс ЛГ продолжается приблизительно 48-50 часов. Через 36 часов после начала выброса Л Г происходит овуляция. Сигнал обратной связи для остановки выброса Л Г неизвестен. Возможно, повышение концентрации прогестерона по механизму негативной обратной связи тормозит гипофизарную секрецию путем снижения частоты пульсации ГнРГ. Непосредственно перед овуляцией ЛГ также подавляет активность собственных рецепторов, которые уменьшают активность функциональной единицы гормона. В результате снижается продукция эстрадиола.
После овуляции и в ответ на Л Г, клетки гранулезы и интерстициальные клетки теки, оставшиеся в овулировавшем фолликуле, дифференцируются в гранулезо- и тека-лютеиновые клетки, образуя соответственно желтое тело. Л Г также индуцирует продукцию сосудистого эндотелиального фактора роста (СЭФР), который играет важную роль в развитии сосудистой сети желтого тела. Вновь образованные сосуды пенетрируют сквозь базальную мембрану и активируют биосинтез прогестерона из ЛПНП в гранулезо-лютеиновых клетках. После овуляции происходит активизация Л Г рецепторов в лютеиновых клетках при помощи неизвестного механизма. Это является решающим фактором в поддержании базального уровня Л Г для сохранения желтого тела.
Для выработки гормонов желтым телом необходимо взаимодействие тека-лютеиновых и гранулезо-лютеиновых клеток, так же как и в преовуляторном фолликуле. В ответ на ЛГ и чХГ, тека-лютеиновые клетки усиливают экспрессию всех ферментов, участвующих в синтезе андростендиона. В гранулезо-лютеиновых клетках при участии ЛГ увеличивается активность ароматазы для ароматизации андрогенов в эстрогены. Главное отличие гранулезо-лютеиновых клеток от преовуляторных клеток гранулезы заключается в индукции экспрессии P450scc и Зр-ГСД, которые дают возможность клеткам синтезировать прогестерон. Секреция
прогестерона и эстрадиола происходит эпизодически и коррелирует с пульсацией ЛГ. ФСГ минимально влияет на выработку прогестерона, однако продолжает стимулировать продукцию эстрадиола в лютеиновую фазу. Концентрация прогестерона возрастает и достигает своего пика примерно на 8-й день лютеиновой фазы, которая длится приблизительно 14 дней.
Процесс обратного развития желтого тела (программированная клеточная смерть) начинается приблизительно на 9-й день после овуляции. Механизмы инволюции желтого тела до конца не выяснены. Как только происходит лютеолизис, начинается быстрое снижение концентрации прогестерона. На основании ряда исследований можно высказать предположение о роли эстрогенов в лютеолизисе. Это было показано при прямом введении эстрогенов в яичник, содержащий желтое тело. На основании экспериментальных данных можно высказать предположение о том, что непосредственно перед лютеолизисом в желтом теле происходит процесс активации ароматазной активности. Повышение ароматазной активности происходит в ответ на стимуляцию гонадотропинами (ЛГ и ФСГ), при этом в лютеиновой фазе, скорее всего, ФСГ играет большую роль. Таким образом, происходит снижение активности Зр-ГСД. Это снижение может привести к уменьшению концентрации прогестерона и, соответственно, к лютеолизису. Более того, местные модуляторы, такие как окситоцин, вырабатываемый клетками желтого тела, участвуют в синтезе прогестерона. Другие исследователи поддерживают роль простагландинов в процессе лютео-лизиса. Экспериментальные данные дают основание предположить, что PGF2a, который секретируется в матке или яичниках в лютеиновой фазе, стимулирует цитокины, такие как фактор некроза опухолей (ФНО), в результате этого возникает апоптоз и, как следствие, деградация желтого тела.
Известно, что в процесс лютеолизиса вовлечены протеолитические ферменты. Предполагается, что в процессе лютеолизиса повышается активность матриксных металлопротеиназ. Известным модулятором выработки матриксных металлопротеиназ является чХГ. Этот факт может играть важную роль на ранних сроках беременности, когда чХГ препятствует регрессии желтого тела. Однако при отсутствии беременности желтое тело уменьшается, что приводит к снижению концентрации прогестерона, эстрадиола и ингибина А. Снижение концентрации этих гормонов приводит к повышению пульсации ГнРГ и секреции ФСГ. Возрастающая концентрация ФСГ стимулирует следующую когорту фолликулов и индуцирует новый менструальный цикл.

Роль матки

Основной функцией матки является размещение и обеспечение жизнедеятельности плода. Эндометрий - внутренний слой полости матки, который дифференцируется в течение менструального цикла таким образом, что он может удержать и питать зародыша. Гистологически эндометрий представлен эпителием, формирующим железы, и стро-мой, которая содержит стромальные фибробласты и межклеточный матрикс. Эндометрий морфологически делится на два слоя: базальный и функциональный. Базальный слой непосредственно примыкает к миометрию и содержит железы, а также поддерживающие сосуды. Он поставляет компоненты, необходимые для развития функционального слоя. Функциональный слой является динамичным слоем, который регенерирует в каждом последующем цикле. В этом слое может происходить имплантация бластоциты.
В течение менструального цикла развитие эндометрия происходит в ответ на стимуляцию гормонами яичников. Как и другие эндокринные органы, матка содержит ряд местных факторов, которые модулируют гормональную активность. Фазы эндометрия координированы с овуляторными фазами. Во время фолликулярной фазы эндометрий проходит пролиферативную фазу. Она начинается в момент наступления менструации и заканчивается с овуляцией. В период лютеиновой фазы эндометрий проходит фазу секреции. Она начинается во время овуляции и заканчивается непосредственно перед менструацией. Если имплантация не произошла, наступает дегенеративная фаза. В этой фазе проходит менструация. Далее фазы эндометрия будут рассматриваться более подробно.
Во время фолликулярной фазы яичники вырабатывают эстрогены, которые стимулируют железы в базальном слое к формированию функционального слоя. Эстрогены способствуют усилению экспрессии генов цитокинов и различных ростовых факторов, включая ЭРФ, ТРФос и ИРФ. Ростовые факторы создают микросреду в пределах эндометрия для усиления эффекта гормонов. В начале менструального цикла эндометрий тонкий, обычно менее 2 мм. Железы эндометрия тонкие и прямые, и направляются от базального слоя к поверхности внутренней полости матки. По мере развития эндотелия и стромы появляются эстрогеновые и прогестероновые рецепторы. Спиральные кровеносные сосуды из базального слоя устремляются через строму, чтобы поддерживать кровоснабжение эндометрия. В конечном итоге функциональный слой покрывает всю полость матки и достигает толщины 3-5 мм (общая толщина 6-10 мм). Эта фаза называется пролиферативной.
После овуляции яичник вырабатывает прогестерон, который тормозит дальнейшую пролиферацию эндометрия. Эти механизмы, возможно, осуществляются при помощи антагонистов эстрогеновых рецепторов. Прогестерон дезактивирует рецепторы к эстрогенам и способствует метаболизму эстрадиола в эндометрии путем стимуляции активности 17р-ГСД и превращения эстрадиола в его менее активный метаболит эстрон. Во время лютеиновой фазы железистый эпителий аккумулирует гликоген и начинает секретировать гликопептиды и протеины в полость матки. Это и является тем жидким субстратом, который поддерживает находящуюся в свободном движении бластоцисту. Прогестерон также стимулирует дифференцировку эндометрия и вызывает гистологические изменения. Железы становятся значительно более извилистыми, спиральные сосуды становятся еще более скрученными и приобретают вид штопора. Строма становится очень отечной в результате повышенной проницаемости капилляров. Клетки выглядят увеличенными и полиэдральными. Этот процесс называется предецидуализация. Эти клетки очень активны и хорошо отвечают на гормональные импульсы. Они вырабатывают простагландины наравне с другими факторами, участвующими в менструации, имплантации и беременности. Эта фаза называется секреторная.
Если не происходит имплантации эмбриона, начинается дегенеративная фаза. Эстрогены и прогестерон вызывают выработку простагландинов PGF2a и PGE2. Простагландины в свою очередь вызывают прогрессирующую вазоконстрикцию и расслабление спиральных сосудов. Вазомоторные реакции вызывают ишемию эндометрия и реперфузионную травму. В конечном итоге внутри эндометрия развивается кровотечение с формированием гематомы. Прогестерон активирует триггеры активности ММР, которые способствуют деградации внеклеточного матрикса. По мере прогресси-рования ишемии и процесса деградации, функциональный слой некротизируется и выбрасывается вместе с менструацией в виде крови и эндометрия. Кровопотеря при нормальной менструации составляет приблизительно от 25 до 60 мл. Несмотря на то что PGF2a является потенциальным стимулятором сокращения миометрия и таким образом уменьшает послеродовое кровотечение, он практически не влияет на менструальное кровотечение. Основным механизмом, участвующим в ограничении кровопотери, являются тромбиновые пробки и эстроген-ассоциированное заживление базального слоя посредством реэпитализации эндометрия, которое начинается в ранней фолликулярной фазе следующего менструального цикла.
Если зачатие произошло, имплантация может возникнуть в эндометрии в середине секреторной (лютеиновой) фазы. В это время эндометрий обладает достаточной толщиной и запасом питательных веществ. Синцитиотрофобласт непосредственно секретирует чХГ, который сохраняет желтое тело и поддерживает секрецию прогестерона, необходимого для полного развития децидуальной оболочки эндометрия.
Таким образом, яичник проходит две фазы в течение менструального цикла: фолликулярную и лютеиновую. Эндометрий - три фазы, которые синхронизируются с фазами яичников. Эти сложные механизмы обратной связи между яичниками и гипоталамо-гипофизарной осью регулируют менструальный цикл. Во время фолликулярной фазы яичники секретируют эстрадиол, который стимулирует эндометрий. После овуляции (лютеиновая фаза) яичники продуцируют эстрогены и прогестерон, которые активируют выпрямление эндометрия и подготавливают его к секреторной фазе. В цикле, не закончившемся беременностью, развивается лютеолизис, который приводит к прекращению выработки гормонов. Этот перерыв гормонального выброса приводит к дегенеративной фазе и началу менструации.