§ 20. Ассимиляция углерода зелеными растениями

Химический состав разных растений неодинаков, но в сред­нем можно принять, что на долю углерода в нем приходится около 45, кислорода - 42, водорода - 6,5, азота - 1,5% и золы около 5 %. Таким образом, если не считать золы, тело ра­стения, в том числе и дерева, состоит в основном из четырех хи­мических элементов: углерода, кислорода, водорода и азота. Откуда же берутся эти элементы? Кислород и водород расте­ние получает из воды. Об источнике азота будет сказано не­сколько позже. Откуда же берет дерево углерод, составляющий почти половину его сухого веса?

В 1771 г. английский ученый Д. Пристлей проделал свой знаменитый опыт с мышью и веткой зеленого растения. Мышь погибала под стеклянным колпаком. Если, же вместе с нею под колпак помещали ветку зеленого растения (мяты), она остава­лась живой. Д. Пристлей сделал вывод, что зеленые растения «исправляют» воздух, испорченный дыханием животных. Од­нако скоро появились опровержения этого открытия, так как у других ученых получалось, что зеленые растения, как и жи­вотные, не исправляют воздух, а делают его негодным для ды­хания и горения. Возникшее противоречие разрешил в 1779 г. Ян Ингенгуз, установивший, что зеленые растения действи­тельно очищают воздух, но только на свету, где зеленые растения, очищая воздух, поглощают углекислый газ (в этом состоит их воздушное питание) и выделяют кислород. Объемы поглощаемого СО2 и выделяемого О2 равны. Одновременно с уг­лекислым газом растение использует еще и воду. Этот процесс был назван фотосинтезом (от греческих слов фотос - свет и синтезис - образование сложных химических соединений из простых), или ассимиляцией углекислоты. Суммарная реакция фотосинтеза такова:

6 CO 2 + 6Н2 О → свет С6Н1206 + 602

Как видим, из 6 молекул углекислого газа и 6 молекул воды с поглощением солнечной энергии получается 1 молекула угле­вода и выделяются в атмосферу 6 молекул свободного кисло­рода. Однако в приведенной реакции даны лишь начало и ко­нец процесса. На самом же деле он проходит значительно слож­нее, имеет множество промежуточных этапов, изучение которых продолжается и сейчас. Эта реакция имеет неоценимое значе­ние, так как Жизнь на Земле возможна лишь благодаря фото­синтезу.

При создании каждой молекулы сахара в ней оказывается, законсервированной солнечная энергия, перехваченная зеленым листом. В целом, по подсчетам X. Райнботе , ежегодно ра­стения запасают в процессе фотосинтеза в виде углеводов столько энергии, сколько расходуют ее 100 тыс. больших горо­дов в течение 100 лет.

Рис. 53. Определение фотосин­теза при помощи стеклянной колбы - : 1 - колба; 2 - термометр; 3 - пробка

Все запасы на Земле каменного угля, торфа, нефти, горючих сланцев представляют собой законсервированную солнечную энергию, полученную в процессе фотосинтеза растений, живших на Земле очень давно. Великий русский ученый ­зев отметил, что зеленое растение - промежуточное звено между животным (в том числе и человеком) и Солнцем, и его роль действительно является космической. Он писал, что пища служит источником силы в нашем организме потому только, что она не что иное, как консервы солнечных лучей.

Как же можно обнаружить, а еще лучше измерить фотосин­тез дерева или хотя бы его части - отдельной ветки, листа? Очень часто учитывают количество СО2, поглощенное расте­нием из воздуха, где содержание углекислого газа составляет всего лишь 0,03 % по объему, или 3 части на 10 тыс. частей воздуха.

Стеклянную колбу (способ предложен и; емкостью около 3 л надевают на ветку дерева при помощи разрезной пробки, герметически закрывающей входное отверстие (рис. 53). Колбу оставляют на 20 мин, не более, иначе в ней будет поглощена веткой вся углекислота и фо­тосинтез остановится. После этого колбу быстро снимают с ветки и тут же в нее наливают определенное количество едкой щелочи, обычно так называе­мой баритовой воды - Ba(OH)2. Щелочь жадно поглощает всю оставшуюся в колбе CO2, которую не успело усвоить растение. Для определения этой вели­чины щелочь из колбы титруют, т. е. приливают к ней по каплям щавелевую кислоту до наступления между кислотой и щелочью химического равновесия. Если пустую колбу выдержать несколько минут на воздухе рядом с опытной веткой, а затем проделать с ней то же, что и с первой колбой, то это покажет общее количество СО2 в колбе в начале опыта. Отняв от этой величины пер­вую, получают количество СО2, поглощенное веткой дерева. Далее определяют площадь листьев опытной ветки. Интенсивность фотосинтеаа выражают в мг СО2, усвоенных 1 дм2 поверхности листьев в течение 1 ч (мг./дм2 ч).

У хвойных, особенно, например, у ели, площадь хвоинок определил трудно, тогда берут вес хвои (сухой или сырой) и выражают фотосинтез в мг С02 на 1 г хвои в 1 ч.

Основные органы фотосинтеза - листья (хвоя). Фотосинтез идет и в молодых, еще зеленых побегах, содержащих хлоропласты, но слабее, чем в листьях. Как уже отмечалось, фото­синтез происходит в зеленых пластидах - хлоропластах, имею­щих очень сложное строение. В хлоропластах содержится зе­леный пигмент хлорофилл, заключенный в особые частицы - граны, погруженные в бесцветную основу хлоропласта - строму, состоящую из белков. При погружении зеленых листьев в спирт, бензин или эфир хлорофилл легко переходит в раствор, кото­рый при этом зеленеет, а листья обесцвечиваются. Перейдя из листа в спирт, хлорофилл теряет способность к фотосинтезу, ко­торый происходит лишь при тесном взаимодействии хлорофилла с белковыми веществами стромы хлоропласта. Кроме того, даже при малейшем нарушении структуры хлоропласта (например, если слегка прокатить по зеленому листу растения стеклянной палочкой) фотосинтез также прекращается. Все это показы­вает, насколько сложно устроен хлоропласт.

Хлорофилл состоит из сложного эфира дикарбоновой кис­лоты и 2 спиртов - метилового и высокомолекулярного непре­дельного спирта фитола. Этот зеленый - пигмент представлен в листе двумя разновидностями: хлорофиллом «a» (C55Н72O5N4Mg) и хлорофиллом «б» (C55Н70O6N4Mg). Кроме того, в листьях растений имеется еще оранжевый пигмент каротин (С40Н56), содержащийся также в изобилии в оранжево-красных корнеплодах моркови (латинское название которой даукус карота и дало название пигменту), и желтый пигмент ксантофилл (С40Н56O2).

Главную роль в процессе фотосинтеза играет хлорофилл. Он поглощает солнечные лучи и направляет их энергию на вос­становление СО2 до углеводов, причем различные лучи сол­нечного света поглощаются хлорофиллом неодинаково. Это хорошо видно, если пропустить луч света через раствор хлоро­филла в спирте, а затем через стеклянную призму спектро­скопа. Солнечный свет состоит из семи лучей, видимых нашим глазом (красных, оранжевых, желтых, зеленых, голубых, си­них и фиолетовых). Общая картина поглощения различных лучей хлорофиллом называется его спектром. Наиболее ин­тенсивно хлорофилл поглощает часть красных лучей с длиной волны 650-680 нанометров (нанометр - одна миллиардная доля метра) и сине-фиолетовые с длиной волны около 470 нано­метров. Зеленые лучи почти полностью отражаются хлорофил­лом, что и придает ему изумрудно-зеленую окраску.

Для образования хлорофилла нужны определенные условия. Одно из них - свет. Клубни картофеля, хранящегося в темном подвале, образуют слабые, бледные, сильно вытянутые побеги. Такие растения называют этиолированными. При выставлении на свет они быстро зеленеют. Следующим необходимым усло­вием для образования хлорофилла является наличие в почве со­лей железа. На щелочных почвах эти соли переходят в нераство­римую форму и становятся недоступными для корней растения. Хотя они при этом и не вытягиваются, но выглядят такими же бледными, как и при этиоляции. Такое явление получило назва­ние хлороза. На основании этого долгое время считали, что железо входит в состав хлорофилла. Как мы теперь знаем, это не так, но железо принимает активное участие в синтезе хлоро­филла как катализатор, хотя количество его ничтожно. Так, если на бледном листе хлоротического растения нанести цара­пину гвоздем, то она сразу же позеленеет, остальные же участки листа останутся такими же бледными, как и были. Поздней холодной весной можно наблюдать желтую, долго не зе­ленеющую молодую траву. Образование хлорофилла в ней задерживается низкой температурой.

Солнечный свет, попадая на молекулу хлорофилла, приво­дит ее в возбужденное состояние, в результате чего образуется аденозитрифосфорная кислота (АТФ)-универсальный источ­ник энергии в клетке. впервые доказал, что фотосинтез наиболее интенсивно идет в лучах, наиболее ак­тивно поглощаемых хлорофиллом, т. е. в красных и сине-фио­летовых.

Лист растения по внешнему строению и внутренней струк­туре является органом, специально приспособленным для фотосинтеза. Он имеет вид тонкой пластинки, хорошо улавли­вающей свет, состоит из мякоти, пронизанной густой сетью жи­лок. С поверхности листа легко сдирается кожица, покрываю­щая, как отмечалось, лист одним слоем клеток и несущая на себе жировую пленку - кутикулу. Густо разветвленная сеть жилок хорошо снабжает каждый участок листа водой, посту­пающей сюда из почвы по черешку, стволу и корням. По жил­кам же оттекают в ствол образующиеся в листе сахара. Эти два встречных потока передвигаются по разным частям жилки (ксилеме и флоэме), не мешая друг другу. Кожица листа со­вершенно прозрачна и через нее в лист легко проходит свет.

Как уже отмечалось, одним из конечных продуктов фото­синтеза является сахар - глюкоза, другим - кислород. Сахар, накопившийся в течение дня, ночью оттекает из листа. Днем тоже происходит отток, но более слабый, и обычно часть обра­зовавшегося сахара, чтобы не мешать дальнейшему процессу фотосинтеза, здесь же, в листе, выводится из реакции, превра­щаясь в крахмал. Это первый видимый продукт фотосинтеза, который легко обнаружить в листе действием йода, от которого крахмал синеет.

Взрослое дерево в почве ветвится многочисленными корнями, следуя за влагой и растворенными в ней питательными минеральными солями. Верхняя часть дерева - крона, несущая листья или хвою, устремляется навстречу солнечному свету. Листья на дереве располагаются в виде так называемой листовой мозаики. Это значит, что каждый лист не затеняет соседние или находящиеся непосредственно под ним.

Казалось бы, раз растения так стремятся за светом, то наилучшего своего развития они должны достичь при максимальном освещении. На самом деле это не так, все обстоит гораздо сложнее. Для фотосинтеза и общего развития разным растениям требуется различное количество солнечного света. Особенно велико это различие у травянистых растений. Например, известный степной сорняк подсвекольник, или щирица, может расти только на совершенно откры­тых местах и даже малейшее затенение заметно подавляет его развитие. Такие растения называются светолюбивыми. В то же время часто встречаю­щийся в лиственных лесах дубровник не переносит открытых мест и наилуч­шего своего развития достигает при значительном затенении, когда щирица уже почти отмирает от недостатка света. Такие виды, как дубровник, назы­вают тенелюбивыми. Конечно, эти два растения представляют собой две противоположности по отношению к свету. Между ними находятся виды, занимающие промежуточное положение, способные переносить большую или меньшую степень затенения. Такие растения называются теневыносли­выми.

Если говорить только о древесных растениях, то среди них нет крайних тенелюбов, вроде дубровника, и их можно разбить на две категории: свето­любивые и теневыносливые. Однако есть очень светолюбивые деревья и крайне теневыносливые, а между ними - промежуточные виды. Все они отличаются друг от друга мерой (степенью) свотолюбия или теневыносливости. Для опре­деления степени светолюбия немецкий ученый И. Визнер поступал следующим образом. Он находил наиболее затененный участок, где еще встречался дан­ный вид растения, измерял освещенность в полдень и сравнивал ее с осве­щенностью на совершенно открытом месте, принятой за единицу. Получалась дробь, показывающая, какой частью полного солнечного освещения может довольствоваться данный вид: чем меньше дробь, тем более теневыносливым является растение, и наоборот. По И. Визнеру, наши наиболее распростра­ненные древесные породы могут существовать при следующих степенях ос­вещенности (в долях от полного солнечного света):

Лиственница..1/5

Берёза……….1/7

Сосна……......1/9

Дуб…………..1/25

Ель……………1/28

Клен………….1/55

Бук……………1/60

Самшит………..1/100

Полученный ряд представляет собой шкалу светолюбия группы древесных пород, в начале которой стоят самые светолюбивые, в конце - наиболее теневыносливые. Эта шкала может быть и более полной, включающей большее число видов, но принцип построения ее остается тем же. В приведенной шкале самшит оказался в 20 раз теневыносливее лиственницы, а лиственница со­ответственно в 20 раз светолюбивее самшита. Но это еще не предел тене­выносливости зеленых растений. Так, водоросли , живущие в почве на глубине до 10 см, могут довольствоваться 1/2500 частью света.

Для измерения интенсивности света И. Визнер пользовался фотографической бумагой, которую выставлял на свет и по скорости ее потемнения (замеченной по секундомеру) судил об относительной освещенности данного места. Если, к примеру, на открытой поляне бумага темнела в течение 1 мин, а под пологом соседнего леса для этого требовалось 2 мин, то можно было принять освещенность под пологом равной половине освещенности на откры­том месте. Сейчас освещенность измеряется более точно специальными прибо­рами (люксметрами и др.).

Светолюбивые и теневыносливые деревья отличаются внешне. Светолю­бивые виды имеют резкую крону, стволы их быстро очищаются от нижних сучьев, которые отмирают вследствие светового голодания. Такова листвен­ница, крона которой со всех сторон так пронизана светом, что он достигает каждой отдельной хвоинки. Белоствольная береза, кажется, сама излучает свет, отражая его стволом и ветвями. Крона ее также редкая, и свет прони­кает ко всем листьям. Под пологом лиственничного и березового леса остается еще достаточно света для образования густого травянистого напочвенного покрова.

Теневыносливые породы имеют густые пирамидальные кроны с нижними ветвями, спускающимися почти до поверхности почвы. Часто в таких насаж­дениях почти нет травяного напочвенного покрова. Под пологом леса из таких пород царит полумрак. Таковы еловые, пихтовые и буковые леса.

Интенсивность света неодинакова даже в различных частях одного и того же дерева. С наружной стороны кроны света больше, чем с внутренней. По­этому и листья снаружи и внутри кроны существенно отличаются по анатоми­ческому строению. В первом случае развивается так называемый световой тип листа, во втором - теневой. Главное отличие этих листьев состоит в том что в световом листе сильнее развита столбчатая ткань, лучше приспособлен­ная для использования прямых солнечных лучей. Она располагается в 2, иногда даже и в 3 слоя. В теневом листе столбчатой ткани всего 1 ряд (не­редко она отсутствует), зато гораздо мощнее губчатая ткань (см. рис. 47), полнее улавливающая рассеянный свет, господствующий внутри кроны. Этому же способствуют большое количество хлорофилла и более крупные хлоропласты в листьях теневыносливых пород (бук, тис), по сравнению со свето­любивыми (лиственница, акация белая).

Как же идет фотосинтез у светолюбивых и теневыносливых пород при различной степени освещенности? Это очень. наглядно показал (см. табл.). Из данных таблицы видно, что у лиственных пород фотосинтез идет интенсивнее, чем у хвойных, при всех степенях освещения, хотя из хвой­ных лиственница ассимилирует почти так же, как лиственные, а из листвен­ных дуб так же слабо, как и хвойные. Более высокий фотосинтез у лиственных связан со структурой плоского листа, лучше приспособленного к ассимиляций (плоская пластинка, лучше улавливающая свет, хорошо развитая столбчатая ткань и др.). Среди хвойных наиболее интенсивно ассимилирует пихта, ель отличается слабым фотосинтезом при любой интенсивности света. Из листвен­ных наибольший фотосинтез у липы и наименьший у дуба. Таблица показы­вает также, что теневыносливые породы наиболее заметно отличаются от све­толюбивых при слабом освещении, когда первые ассимилируют энергичнее. При дальнейшем увеличении света (до 30 %) .различия в фотосинтезе у свето­любивых и теневыносливых пород уменьшаются. Наконец, при приближении к полному солнечному освещению фотосинтез у светолюбивых пород (осо­бенно хвойных) становится выше, чем у теневыносливых.

Влияние степени освещенности на интенсивность фотосинтеза (мгС09 на 1 г сырого веса листа или хвои за 1 ч)

Породы

Освещенность, % от полного солнечного

Хвойные светолюбивые:

сосна

0,08

3,3-

лиственница

0,06

Хвойные теневыносливые:

ель

0,06

пихта

0,13

Лиственные светолюбивые:

дуб

0,12

ива

0,03

береза

0,18

Лиственные теневыносливые:

клен

0,54

липа

0,69

Примечание: Знак минус перед цифрой означает, что при этом на­блюдалось не поглощение, а выделение СО2 за счет дыхания.

Более слабый фотосинтез у хвойных компенсируется более длительным периодом их ассимиляционной деятельности (неопадающая хвоя) приблизи­тельно на 3 мес., и поэтому общая продуктивность у хвойных и лиственных оказывается примерно равной.

Познакомившись коротко с влиянием света на фотосинтез, посмотрим теперь, как связан этот процесс с содержанием в атмосфере углекислоты - основного «сырья» для построения тела дерева. Ивестно, что воздух содержит всего лишь 0,03 % углекислого газа, или 3 части на 10 тыс. частей воздуха. В процессе эволюции растения приспособились усваивать углекислый газ даже при таком его содержании в воздухе. Лист дерева является очень эффектив­ным органом и для поглощения углекислого газа. Углекислый газ поступает в лист через устьичные щели. Хотя площадь всех устьичных щелей состав­ляет всего лишь 1 % площади листа, углекислый газ устремляется в них с очень большой скоростью.

Несмотря на все это, увеличение содержания СО2 в воздухе в 10 раз (с 0,03 до 0,3 %) усиливает фотосинтез хвои сосны. Это свойство использу­ется при выращивании растений в оранжереях, теплицах, а также в открытом грунте. Углекислый газ можно подводить по трубам от близлежащих про­мышленных предприятий, выбрасывающих огромные количества его в воздух. При этом следует предварительно очистить промышленную углекислоту от содержащихся в ней вредных примесей (сернистого газа и др.). Успешный рост растений в парниках зависит не только от повышения температуры, но и от обильного питания углекислотой, выделяемой разлагающимся навозом. Следует помнить, что слишком высокая концентрация СО2 (1-2 % и выше) вредна не только для человека, но и для растений. Надо также иметь в виду, что максимального эффекта от подкормки углекислотой можно добиться лишь при достаточном освещении. Это особенно важно учитывать в теплицах и оранжереях, где нередко не хватает света.

В лесу почва постоянно выделяет СО2 в процессе разложения органиче­ских веществ различными микроорганизмами (дыхание почвы). Вследствие " этого в нижних слоях воздуха содержание СО2 может быть выше обычного (до 0,08 %). Это помогает выживать в таких условиях теневыносливым расте­ниям, компенсируя до некоторой степени острый недостаток света, который они испытывают. В более высоких слоях воздуха (в зоне крон деревьев) в летние дни наблюдается снижение СО2 (до 0,02 % и менее) вследствие интенсивного поглощения его в процессе фотосинтеза. Ночью эта убыль вновь пополняется, так как фотосинтез прекращается, а идет только дыхание почвы и деревьев, сопровождающееся выделением углекислого газа в воздух.

Суточный ход фотосинтеза можно выразить в виде кривой. Начинаясь с восходом солнца, фотосинтез обычно достигает максимума в утренние или околополуденные часы, в полдень он падает вследствие перегрева листа и переполнения его крахмалом. У молодых деревьев (в стадии жердняка) фото­синтез идет наиболее интенсивно. Этот период обычно совпадает и с наилуч­шим ростом дерева. У стареющего дерева фотосинтез, а вместе с ним и нара­стание органической массы (прирост) постепенно снижаются.

Как же связан фотосинтез с накоплением (приростом) орга­нического вещества, а значит, и с урожаем? Поскольку фотосин­тез - единственный процесс, создающий органическое веще­ство (более 90% сухого веса дерева), казалось бы, прирост и урожай должны находиться в прямой зависимости от фотосин­теза. На самом же деле все обстоит сложнее. Прежде всего, в дереве одновременно с фотосинтезом идет противоположный процесс - дыхание, заключающееся в расходе органического вещества. Поэтому в простейшем случае прирост и урожай представляют собою разницу между фотосинтезом и дыханием. Кроме того, сам прирост органического вещества в дереве де­лится на основной - прирост наиболее ценной части дерева, ствола, и прирост других частей (листьев, хвои, ветвей, почек, цветков, плодов и пр.), на создание которых тратится органиче­ское вещество, но они не входят в хозяйственно ценную часть лесного дерева,

Интенсивность фотосинтеза в природных условиях меняется мало. Наибольшей она бывает у растений в крайних условиях существования (в пустынях, горах и т. д.). Поэтому прирост и урожай дерева создаются не за счет интенсивности фотосинтеза, а за счет его рабочей площади. На первый взгляд за эту ве­личину надо принять поверхность всех листьев (или хвои) де­рева. На самом же деле многие листья (нижние, находящиеся в глубине кроны ближе к стволу) не только не дают прибыли, но часто сами являются потребителями органических веществ, так как их ассимиляция не покрывает даже расходов на соб­ственное дыхание. Вследствие этого рабочая поверхность фото­синтеза у дерева обычно бывает меньше листовой.

Действительное рабочее время фотосинтеза также оказывается меньше возможного, за которое иногда принимают весь световой день. В течение дня лист не всегда работает с накоп­лением органического вещества. В жаркие летние дни, осо­бенно в полдень, листья часто вместо поглощения начинают выделять углекислоту (так же, как это бывает при недостатке света). Дождливое время тоже следует вычесть из общего ра­бочего времени, сюда же надо отнести весь период с темпера­турой воздуха ниже -6°С.

Дыхание дерева слагается из средней интенсивности дыха­ния, массы дышащих частей и времени дыхания. Следует отме­тить, что масса дышащих частей и время дыхания во много раз превышают соответствующие величины для фотосинтеза. Ведь фотосинтез происходит только днем и только в листьях или хвое, да и то, как мы видели, не во всех. Дыхание же идет непрерывно во всех живых клетках каждой части дерева: листьях, хвое, ветвях, стволе и корнях.

Отсюда становится очевидным, что для накопления органи­ческого вещества в дереве фотосинтез должен в несколько раз превышать дыхание. Величина же затрат на дыхание значи­тельна и составляет. 20-30 и даже 50 % общего количества органических веществ, созданных за счет фотосинтеза.

На этом основании некоторые ученые считают, что прирост и урожай органического вещества в дереве легче увеличить мерами, ограничивающими дыхание, чем мерами, стимулирую­щими фотосинтез. К сожалению, пока нет мер, которые смогли бы ограничить дыхание, по крайней мере в лесу. В теплицах же и оранжереях при подкормке растений углекислотой не только увеличивается интенсивность фотосинтеза, но одновре­менно и снижается дыхание, так как углекислый газ, являясь продуктом дыхания, задерживает этот процесс.

Источники углерода, азота и других элементов для микроорганизмов. Катаболизм (энергодающие процессы) и биосинтез или конструктивный метаболизм (энергопотребляющие процессы). Их значение и взаимосвязь у разных микроорганизмов

Процесс роста и развития микроорганизмов начинается с поглощения пищи. У микроорганизмов отсутствуют специальные органы принятия пищи, питательные вещества проникают в клетку через всю поверхность. Соединения с большой молекулярной массой предварительно расщепляются экзоферментами микроорганизмов.

Микроорганизмы чрезвычайно разнообразны по своим пищевым потребностям. Они могут существовать за счет усвоения самых различных субстратов. Одно и то же соединение для одних видов может быть хорошим продуктом питания, а для других не только недоступным, но даже ядовитым. Например, известны микроорганизмы, усваивающие фенол, парафин, нафталин, угарный газ и др. В зависимости от концентрации некоторые вещества могут быть для одного и того же микроорганизма либо ценным источником питания, либо ингибирующим веществом. Так, сахара в небольших концентрациях являются легко ассимилируемым продуктом для многих микроорганизмов, в то же время высокие концентрации сахара угнетают их рост.

Источники питания должны обеспечивать микроорганизмы всеми элементами для синтеза различных клеточных структур, а также источниками энергии, необходимой не только для биосинтетических процессов, но и для других энергозависимых процессов, характерных для микробной клетки, как в стадии активного роста, так и в покоящейся стадии. Микроорганизмам, как и другим организмам, нужна вода, углерод, азот, фосфор, сера и другие элементы в макро- и микродозах. Отдельным микроорганизмам необходимы некоторые органические соединения.

Пища должна содержать такие вещества, которые удовлетворяли бы потребность микроорганизмов в химических элементах, входящих в состав их тела.

Микроорганизмы отличаются большим разнообразием типов питания. Одни питаются, подобно зеленым растениям, минеральными веществами, синтезируя из этих простых веществ все сложные компоненты клетки. Другие микроорганизмы, подобно животным организмам, нуждаются в органических соединениях.

Требования различных микроорганизмов в отношении питательных веществ, особенно источников углерода и азота, весьма разнообразны и специфичны.

Углеродное питание. Углерод относится к числу важнейших органогенов и, как указывалось, составляет около 50 % сухой массы клетки. По источнику углеродного питания микроорганизмы можно разделить на две группы: автотрофные и гетеротрофные.

Автотрофные (сами себя питающие) микроорганизмы способны в качестве единственного источника углерода для синтеза органических веществ тела использовать углекислоту и ее соли.

Синтез органических веществ из минеральных соединений требует затраты энергии. Среди автотрофных микроорганизмов имеются виды, которые ассимилируют углекислый газ, как и зеленые растения, используя солнечную энергию, - их называют фотосинтезирующими. Другие автотрофные микроорганизмы в процессе синтеза органических соединений используют энергию химических реакций окисления некоторых минеральных веществ. Такие микроорганизмы называют хемосинтезирующими.

К фотосинтезирующим микроорганизмам относятся водоросли, обладающие хлорофиллом, и некоторые пигментные бактерии, например зеленые и пурпурные серобактерии. В клетках пурпурных бактерий находится зеленый пигмент бактериохлорофилл, сходный с хлорофиллом высших растений. В клетках зеленых бактерий также находится в небольшом количестве бактериохлорофилл, но имеется и другой фотосинтетический пигмент (хлоробиум - хлорофилл), химическая природа которого пока не установлена.

Бактериальный фотосинтез не сопровождается выделением кислорода, как у зеленых растений, а роль воды (как источника водорода для восстановления СО 2) у большинства выполняет Н 2 S; при этом в клетках накапливается сера. Все фотосинтезирующие бактерии содержат также каротиноиды (от желтого до красного цвета). Роль пигментов аналогична хлорофиллу растений - поглощение световой энергии.

К хемосинтезирующим микроорганизмам относятся бактерии, окисляющие водород с образованием воды (водородные бактерии), аммиак в азотную кислоту (нитрифицирующие бактерии), сероводород до серной кислоты (бесцветные серобактерии), а также закисное железо в окисное (железобактерии). Процесс хемосинтеза у микроорганизмов был открыт С.Н. Виноградским.

Гетеротрофные (питающиеся другими) микроорганизмы в качестве источника углерода используют органические соединения и перестраивают их в вещества своих клеток. К таким организмам относятся многочисленные бактерии, грибы и дрожжи.

Большинство гетеротрофных микроорганизмов живет за счет использования органических веществ различных субстратов животного и растительного происхождений. Такие организмы называются с а п р о ф и т а м и. К ним относятся все те микроорганизмы, которые разлагают различные органические вещества в природе (в почве, воде), вызывают порчу пищевых продуктов или используются в процессах переработки растительного и животного сырья.

Однако резкую грань между этими подгруппами гетеротрофов не всегда можно установить. Отдельные виды болезнетворных микробов могут существовать во внешней среде как сапрофиты и, наоборот, некоторые сапрофиты в определенных условиях вызывают заболевания у людей, животных и растений.

Многие сапрофиты «всеядны», т. е. способны использовать в качестве источника углерода разнообразные органические соединения - углеводы, спирты, органические кислоты, белки и др. Некоторые проявляют резко выраженную специфичность (избирательность) в отношении источника углерода и используют только определенные вещества или даже одно из них. Такие микроорганизмы называют «субстрат-специфичными». Примерами могут служить целлюлозные бактерии, для которых клетчатка является единственным источником углерода, а также углеводородные бактерии, использующие углеводороды. Подобная избирательность наблюдается у дрожжей в отношении сахаров.

Примером специфичности может также служить различное отношение микроорганизмов к изомерным соединениям. Так, гриб Оidiит lаtсis усваивает изобутиловый спирт и не усваивает нормальный бутиловый. Последний является хорошим источником углерода для гриба Asреrgi11иs пiger, а изобутиловый спирт этот гриб не потребляет. Как видно, имеет значение даже структура молекулы. Вещества, являющиеся хорошим источником углерода для одних, могут быть непригодны и даже токсичны для других.

Гетеротрофы наряду с органическими соединениями используют и СО2, вовлекая его в обмен веществ. Углекислый газ служит дополнительным источником углерода для биосинтеза веществ тела.

Специфичностью отношений микроорганизмов к источнику углеродистой пищи определяется круговорот углерода в природе. Эта особенность гетеротрофов проявляется и при порче многих пищевых продуктов, при смене развития одних форм другими.

Азотное питание. Источники азота - элемента, необходимого для синтеза белков, нуклеиновых кислот и других азотсодержащих веществ клетки, - у микроорганизмов могут быть также очень разнообразными.

Известны сапрофиты (молочнокислые и некоторые гнилостные бактерии), которые тоже не могут синтезировать белки своего тела из простых азотсодержащих соединений. Развитие их возможно лишь при наличии в среде сложных органических форм азота (пептонов, пептидов) или полного набора аминокислот, входящих в состав белков их клеток.

Другие сапрофиты могут развиваться в субстратах, содержащих только некоторые аминокислоты и даже одну-две из них, а все остальные синтезируют сами. Они дезаминируют взятые аминокислоты и образующийся аммиак используют в реакциях аминирования оксикислот или чаще кетокислот, например:

NН3 + СН2ОНСНОНСООН СН2ОНСНNН2СООН + Н20;

глицериновая кислота

NН3 + Н2 + НООССН2СОСООН НООCCН2CНNН2CООН + H2O.

Щавелево - уксусная кислота

Синтез новых аминокислот может протекать и без дезаминирования взятых из субстрата аминокислот (без промежуточного образования аммиака) путем перестройки их (переаминирования) - переноса аминогруппы с аминокислоты на кетокислоты при участии ферментов аминотрансфераз:

R1СНNH2СООН + R2СОСООН R1СОСООН + R2СНNН2СООН.

Аспарогиновая кислота

Многие сапрофиты (бактерии, грибы, дрожжи) не нуждаются в готовых аминокислотах, довольствуясь минеральными соединениями азота, наилучшими из которых являются аммонийньие соединения.

Многие микроорганизмы (преимущественно грибы, актиномицеты, реже бактерии) используют в качестве источника азота нитраты, реже нитриты. Эти окисленные формы азота предварительно восстанавливаются с образованием аммиака.

Есть бактерии и грибы (из класса базидиомицетов), способные использовать свободный азот атмосферы. Они переводят его в связанное состояние, восстанавливая в аммиак, который и используется для синтеза аминокислот. Эти микроорганизмы называют азотфиксаторами, или азотсобирателями. Примером могут служить клубеньковые бактерии, обитающие в корнях бобовых растений, и свободно живущие в почве азотфиксирующие бактерии. Аммиак, таким образом, является промежуточным продуктом ассимиляции различных источников азота.

Усвоение зольных элементов. Для синтеза клеточных веществ нужны различные зольные элементы: сера, фосфор, калий, кальций, магний, железо. Хотя потребность в них и незначительна, однако при недостатке в питательной среде даже одного из этих элементов микроорганизмы не будут развиваться и могут погибнуть.

Большинство микроорганизмов способно усваивать зольные элементы из минеральных солей.

Микроэлементы, необходимые для роста микроорганизмов, могут быть использованы также в виде минеральных солей.

Источником кислорода и водорода являются вода и различные другие вещества.

Попав внутрь клетки микроорганизма, питательное вещество участвует во множестве разнообразных химических реакций. Эти реакции, а также все остальные химические проявления жизнедеятельности микроорганизмов носят общее название метаболизма (обмена веществ). Метаболизм включает в себя две группы жизненно важных процессов -- катаболизм и биосинтез.

Катаболизм (энергетический обмен) -- это процессы расщепления пищевых веществ -- углеводов, жиров и белков, которые происходят в основном за счет реакций окисления, в результате чего выделяется энергия. У микроорганизмов различают две основные формы катаболизма -- аэробное дыхание и брожение. При аэробном дыхании осуществляется полное разрушение органических веществ с выходом большого количества энергии и образованием бедных энергией конечных продуктов (С02 и Н 2О). При брожении происходит неполный распад органических веществ с высвобождением незначительного количества энергии и накоплением богатых энергией конечных продуктов (этилового спирта, молочной, масляной и других кислот). Высвобождающаяся при катаболизме органических веществ свободная энергия аккумулируется в форме энергии фосфатных связей аденозинтрифосфата (АТФ).

Биосинтез (конструктивный обмен) объединяет процессы синтеза макромолекул клетки (нуклеиновых кислот, белков, полисахаридов и т. д.) из более простых соединений, присутствующих в окружающей среде. Процессы биосинтеза связаны с потреблением свободной энергии, которая вырабатывается в результате аэробного дыхания или брожения (или при фотосинтезе, или хемосинтезе) и поставляется в форме АТФ. Катаболизм и биосинтез протекают одновременно, многие реакции и промежуточные продукты являются для них общими.

А. ускорение световых и темновых реакций фотосинтеза

Б. использование световой энергии для синтеза органических веществ

В. расщепление органических веществ до неорганических

Г. участие в реакциях синтеза белка на рибосомах

Какой из перечисленных процессов происходит в световую фазу фотосинтеза?

А. образование глюкозы Б. синтез АТФ

В. поглощение CO 2 Г. все перечисленное

Назовите в хлоропласте участок, где происходят реакции темновой фазы фотосинтеза

А. наружная мембрана оболочки Б. вся внутренняя мембрана оболочки

В. граны Г. строма

30. Об условиях жизни древесных растений в разные годы можно узнать по толщине

А. Коры Б. Пробки

В. Лубяных волокон Г. Годичных колец

31. В пробирке с раствором хлорофилла фотосинтез не происходит, так как для этого процесса необходим набор ферментов, расположенных на

А. Кристах митохондрий Б. Гранах хлоропластов

В. Эндоплазматической сети Г. Плазматической мембране

Какие почки развиваются на листьях и корнях цветковых растений?

А. Придаточные Б. Верхушечные В. Пазушные Г. Боковые

33. Источником углерода, используемого растениями в процессе фотосинтеза, служит молекула

А. Угольной кислоты Б. Углеводорода

В. Полисахарида Г. Углекислого газа

Для улучшения дыхания корней культурных растений необходимо

А. Проводить прополку сорняков

Б. Систематически поливать растения

В. Периодически рыхлить почву вокруг растения

Г. Периодически подкармливать растения минеральными удобрениями

35. Приспособление растений к уменьшению испарения воды – наличие

А. Устьиц на верхней стороне листа

Б. Большого числа листовых пластинок

В. Широких листовых пластинок

Г. Воскового налета на листьях

36. Видоизмененный подземный побег многолетних растений с утолщенным стеблем, почками, придаточными корнями и чешуевидными листьями – это

А. Главный корень Б. Корневище

В. Боковой корень Г. Корнеклубень

Подземный побег отличается от корня наличием у него



А. Вегетативных почек

Б. Зоны проведения

В. Зоны всасывания

Г. корневых волосков

38. Какие удобрения усиливают рост зеленой массы растений?

А. Органические Б. Азотные

В. Калийные Г. Фосфорные

39. Свойство органов растений изгибаться под влиянием силы земного притяжения называют

А. Гидротропизмом Б. Фототропизмом

В. Геотропизмом Г. Хемотропизмом

40. Внешним сигналом, стимулирующим наступление листопада у растений, служит

А. Увеличение влажности среды

Б. Сокращение длины светового дня

В. Уменьшение влажности среды

Г. Повышение температуры среды

41. Затопление ранней весной полей пшеницы талыми водами иногда приводит к гибели всходов, так как при этом нарушается процесс

А. Фотосинтеза из-за недостатка кислорода

Б. Дыхания из-за недостатка кислорода

В. Поглощения воды из почвы

Г. Испарения воды

Часть В

В1(выберите несколько верных ответов из шести)

Значение транспирации

А. регулирует газовый состав внутри листа

Б. способствует передвижению воды

В. обеспечивает привлечение опылителей

Г. улучшает транспорт углеводов

Д. регулирует температуру листьев

Е. снижает удельный вес листвы

В2(выберите несколько верных ответов из шести)

Корневой чехлик выполняет функции

А. обеспечивает отрицательный геотропизм

Б. обеспечивает положительный геотропизм

В. облегчает проникновение корня в почву

Г. запасает питательные вещества

Д. защищает активно делящиеся клетки

Е. участвует в транспорте веществ

В3. Выберите несколько верных ответов

В чем состоит значение фотосинтеза?

А. в обеспечении всего живого органическими веществами

Б. в расщеплении биополимеров до мономеров

В. в окислении органических веществ до углекислого газа и воды

Г. в обеспечении всего живого энергией

Д. в обогащении атмосферы кислородом, необходимым для дыхания

Е. в обогащении почвы солями азота

В4. Установите соответствие между наиболее важными процессами и фазами фотосинтеза

В5. Установите правильную последовательность процессов фотосинтеза

А. возбуждение хлорофилла

Б. синтез глюкозы

В. соединение электронов с НАДФ + и Н +

Г. фиксация углекислого газа

Д. фотолиз воды

В6. Выберите несколько верных ответов

Выберите процессы, происходящие в световую фазу фотосинтеза

А. фотолиз воды Б. синтез углеводов

В. фиксация углекислого газа Г. синтез АТФ

Д. выделение кислорода Е. гидролиз АТФ

В7. Выберите несколько верных ответов

В темновую фазу фотосинтеза в отличие от световой происходит

А. фотолиз воды

Б. восстановление углекислого газа до глюкозы

В. синтез молекул АТФ за счет энергии солнечного света

Г. соединение водорода с переносчиком НАДФ +

Д. использование энергии молекул АТФ на синтез углеводов

Е. образование молекул крахмала из глюкозы

В8. Выберите несколько верных ответов

Самая большая экосистема.

гидросфера

атмосфера

биосфера

Биосфера – это геологическая оболочка Земли, охватывающая часть атмосферы, всю гидросферу и верхнюю часть литосферы вместе с населяющими их организмами. Биосфера – самая большая экосистема, объединяющая в единый планетарный круговорот отдельные круговороты веществ каждой из экосистем.

Жизненные среды биосферы.

водная, почвенная

наземно-воздушная среда

оба ответа правильные

В пределах биосферы можно выделить четыре основные среды обитания. Это водная,наземно-воздушная, почвенная среда и образуемая самими живыми организмами . Вода служит средой обитания для многих организмов. Из воды они получают все необходимые для жизни вещества: пищу, воду, газы. Поэтому, как бы ни были разнообразны водные организмы, все они должны быть приспособлены к главным особенностям жизни в водной среде. Эти особенности определяются физическими и химическими свойствами воды. Наземно-воздушная среда , освоенная в ходе эволюции позже водной, более сложна и разнообразна, и её населяют более высокоорганизованные живые организмы. Наиболее важным фактором в жизни обитающих здесь организмов являются свойства и состав окружающих их воздушных масс. Плотность воздуха гораздо ниже плотности воды, поэтому у наземных организмов сильно развиты опорные ткани — внутренний и наружный скелет. Формы движения очень разнообразны: бегание, прыгание, ползание, полёт и др. в воздухе летают птицы и некоторые виды насекомых. Потоки воздуха разносят семена растений, споры, микроорганизмы. Жизнь почвы необычайно богата. Некоторые организмы проводят в почве всю свою жизнь, другие — часть жизни. Условиями жизни в почве во многом определяются климатическими факторами, важнейшим из которых является температура. Тела многих организмов служат жизненной средой для других организмов. Условия жизни внутри другого организма характеризуются большим постоянством по сравнению с условиями внешней среды. У них не развиты органы чувств или органы движения, зато возникают приспособления для удерживания в теле хозяина и эффективного размножения.

Явление, при котором вещество передаётся по замкнутым циклам, многократно циркулируя между организмами и окружающей средой.

пищевая цепь

круговорот веществ

нет правильного ответа

Биосферный круговорот непременно включает живые и неживые компоненты. Органическое вещество может быть вновь использовано растениями только после разложения редуцентами до неорганических составляющих. Связь между живым и неживым веществом в биосферном круговороте осуществляет миграция химических элементов, входящих в состав как органических, так и неорганических соединений.

Основной источник энергии в биосфере.

Солнце

залежи нефти

продуценты

Основным источником энергии для поддержания жизни в биосфере является Солнце. Его энергия преобразуется в энергию органических соединений в результате фотосинтетических процессов, происходящих в фототрофных организмах. Энергия накапливается в химических связях органических соединений, служащих пищей растительноядным и плотоядным животным. Органические вещества пищи разлагаются в процессе обмена веществ и выводятся из организма. Выделенные или отмершие остатки разлагаются бактериями, грибами и некоторыми другими организмами. Образовавшиеся химические соединения и элементы вовлекаются в круговорот веществ. Биосфера нуждается в постоянном притоке внешней энергии, т.к. вся химическая энергия превращается в тепловую. Поэтому запасание растениями солнечной энергии в органических веществах играет исключительно важную роль в распределении и численности живых организмов.

Залежи нефти, каменного угля, торфа образовались в процессе круговорота:

азота, водорода

кислорода

углерода

В палеозойской эре происходит начальный этап накапливания нефти и газа органического происхождения углерода . В каменноугольном периоде на суше широко распространились леса, состоящие главным образом из папоротников и хвощей. Именно из упавших в воду стволов деревьев, не подвергающихся гниению, образуются огромные запасы каменных углей.

Бактерии, расщепляющие мочевину до ионов аммония и углекислого газа, принимают участие в круговороте...

азота и углерода

фосфора и серы

кислорода и углерода

Одной из специальных групп аммонификаторов являются бактерии, разлагающие мочевину. Мочевина — главная составная часть мочи человека и большинства животных. Человек выделяет бактерии, разлагающие в день от 30 до 50 г мочевины. Под влиянием бактерий мочевина разлагается, образуется карбонат аммония. Последний быстро распадается на воду, аммиак и углекислый газ .

В основе круговорота веществ лежат такие процессы, как...

расселение видов

фотосинтез и дыхание

естественный отбор

Естественным источником углерода, используемого растениями для синтеза органического вещества, служит углекислота, входящая в состав атмосферы или находящаяся в растворённом состоянии в воде. В процессе фотосинтеза углекислота превращается в органическое вещество, служащее пищей животным. Дыхание , брожение и сгорание топлива возвращают углекислоту в атмосферу.

Клубеньковые бактерии включают в круговорот...

углерод

фосфор

азот

Циркуляция биогенных элементов обычно сопровождается их химическими превращениями. Нитратный азот , может превращаться в белковый, затем переходить в мочевину, превращаться в аммиак и вновь синтезироваться в нитратную форму под влиянием микроорганизмов. В биохимическом цикле азота действуют различные механизмы, как биологические, так и химические.

Солнечная энергия улавливается...

продуцентами

редуцентами

консументами первого порядка

Лишь зелёные растения способны фиксировать световую энергию и использовать в питании простые неорганические вещества. Такие организмы выделяют в самостоятельную группу и называют автотрофами , или продуцентами — производителями биологического вещества. Они являются важнейшей частью любого сообщества, потому, что практически все остальные организмы прямо или косвенно зависят от снабжения веществом и энергией, запасёнными растениями. На суше автотрофы — это обычно крупные растения с корнями, тогда как в водоёмах их роль берут на себя микроскопические водоросли, обитающие в толще воды (фитопланктон).

Усилению парникового эффекта, по мнению учёных, в наибольшей степени способствует:

озон

углекислый газ

двуокись азота

Парниковый эффект – это явление, при котором атмосферные газы (водяной пар, углекислый газ, метан и озон) удерживают восходящее от Земли тепло в тропосфере, не давая ему подниматься в более высокие слои атмосферы. При этом происходит нагревание, как самой атмосферы, так и земной поверхности. Круговорот кислорода, углерода и других элементов, вовлекаемых в процесс фотосинтеза, поддерживает современный состав атмосферы, необходимый для существования жизни на Земле. Фотосинтез препятствует увеличению концентрации СО 2 , предотвращая перегрев земли вследствие так называемого парникового эффекта.

Озон, который образует озоновый экран, формируется в:

гидросфере

мантии Земли

атмосфере

Первые живые организмы развивались в воде, которая защищала их от воздействия ультрафиолетовых лучей. Кислород, выделявшийся в процессе фотосинтеза, в верхних слоях атмосферы под действием ультрафиолетовых лучей превращался в озон (его молекула содержит три атома кислорода — О 3). По мере накопления озона произошло образование озонового слоя, который как экран, надёжно защитил поверхность Земли от губительных для живых организмов ультрафиолетовой солнечной радиации. Это позволило живым организмам выйти на сушу и заселить её.

Наибольшее количество видов находится в экосистемах:

влажного тропического леса

тайги

листопадных лесов умеренного пояса

В наши дни на Земле известно около 500 тыс. видов растений, и каждый год ботаники открывают новые. Разнообразие видов растений (флористическое) существенно различается в природных регионах планеты. Очевидно, что в пустынях видов гораздо меньше, чем в джунглях. Но как определить, где больше видов — в степях или в лесах и почему, например, в вечнозелёных тропических лесах их больше, чем в широколиственных. На эти вопросы отвечает наука биогеография, которая изучает географические закономерности формирования биологического разнообразия на Земле. Для того чтобы оценить, какие территории бедны видами, а какие богаты, составляют карты биоразнообразия. На них разными цветами отображают области с различным числом видов, приходящихся на единицу площади.

Конкретной (или локальной) флорой называют количество высших сосудистых растений на площади примерно в 100 км 2 . На островах Франца-Иосифа в приполярной области оно не превышает 50-100 видов, в тундре составляет 200-300, в тайге — 400-600, в лесостепи достигает 900 видов, в степях — 900-1000, в тропиках — более 1000.

Наиболее опасной причиной обеднения биологического разнообразия — важнейшего фактора устойчивости биосферы — является...

химическое загрязнение среды

прямое истребление

разрушение мест обитания

Биологическое разнообразие - это все биологические виды и биотические сообщества, которые сформировались и формирующиеся а настоящее время в разных средах обитания (почвенных, наземных, пресноводных, морских). Это - основа поддержания жизнеобеспечивающих функций биосферы и существования человека. Но любое вторжение человека в экосистемы биосферы, как правило, вызывает цепь экологических последствий. Планомерные лесные вырубки, которые регулируют состав и качество леса и необходимы для удаления поврежденных и больных деревьев. Но сплошная вырубка, проводимая человеком для освобождения земли под пашни, дороги, промышленные предприятия, города и т.д. ведет к понижению уровня грунтовых вод и, как следствие, к обмелению рек, засухам, засыханию почвы. После вырубки леса тенелюбивые растения оказываются в условиях открытого местообитания, где испытывают неблагоприятное воздействие прямого света. Это ведет к угнетению и даже исчезновению некоторых видов (например, кислицы обыкновенной, майника двулистного и др.). На месте вырубок поселяются светолюбивые растения. Меняется и животный мир связанный с фитоценозом. Животные исчезают или перебираются в другие экосистемы. Все эти (и другие факторы) разрушают привычные места обитания Сера находится в виде сульфидов и свободной серы в составе морских осадочных пород и почвы. Превращаясь в сульфаты, в результате окисления серобактериями, она включается в ткани растений, затем вместе с остатками их органических соединений подвергается воздействию анаэробных редуцентов. Образовавшийся в результате их деятельности сероводород снова окисляется серобактериями. Фосфор содержится в составе фосфатов горных пород, в пресноводных и океанических отложениях, в почвах. В результате эрозии фосфаты вымываются и, в кислой среде переходят в растворимое состояние с образованием фосфорной кислоты, которая усваивается растениями. В тканых животных фосфор входит в состав нуклеиновых кислот, костей. В результате разложения редуцентами остатков органических соединений, он снова возвращается в почвы, а затем в растения.

Одна из особенностей живого вещества.

способность быстро занимать всё свободное пространство

способность к размножению

способность к фотосинтезу

К основным особенностям живого вещества относится:

  • Способность быстро осваивать все свободное пространство.
  • Движение не только пассивное, но и активное.
  • Устойчивость при жизни и быстрое разложение после смерти.
  • Высокая адаптация к различным условиям.
  • Высокая скорость протекания реакций.