Выбирая участок под строительство, на физические свойства грунтов внимание обращается в первую очередь.

Если грунт насыпной, наносной, торфяной или растительный, от возведения здания на этом участке следует отказаться.

Для фундаментов они являются абсолютно непригодными. Самые высокие строительные свойства грунтов на тех участках, где почва давно и плотно слежалась, высоко содержание крупнозернистого песка и глины.

Физические свойства грунтов для строительства

Каковы различия в физических свойствах таких грунтов, как песок и глина?

Прежде всего, основные строительные свойства этих грунтов сводятся к следующему. Пески в чистом виде имеют ничтожную связь, глины обладают значительной связностью. Пески не пластичны, глины — пластичны. Пески почти немедленно после приложения силы сжимаются, глины же под действием внешней нагрузки сжимаются очень медленно. В то нее время степень сжимаемости песков ничтожна, глины сжимаются сильно.

Что называется материком, и какими должны быть качества этого грунта для строительства фундаментов?

Всякий грунт, способный по своим свойствам служить естественным основанием для возведения на нем необходимого сооружения, называется материком. От материка требуется: достаточная прочность; малая и равномерная сжимаемость; нерйзмываемость; достаточная мощность; невыветриваемость. Достаточная прочность определяется соотношением между весом сооружения, приходящимся на 1 см площади основания, и допустимым на такую же площадь данного грунта давлением. Также следует учитывать характер нагрузки и глубину заложения фундамента.

Что означает понятие «легкий - тяжелый» дом?

Тяжелый — это дом, на строительной площадке которого касательные силы пучения, способные действовать по боковой поверхности заглубленных ниже расчетной глубины промерзания фундаментов, меньше веса дома. Легкий — это дом, на площадке которого касательные силы пучения больше веса дома. Из данных определений следует, что один и тот же дом может быть легким или тяжелым в зависимости: от климатической зоны, где он строится; от степени пучинистости грунтов; от теплового режима дома; от конструктивных особенностей цокольной части дома. Например, неотапливаемый дом в Московской области может относиться к категории тяжелых, а на строительных площадках Новосибирска при тех же характеристиках грунтов, но где нормативная глубина промерзания равна 2,2 м и суммарные силы пучения больше, к категории легких домов. Для получения показателей по другим регионам России надо приведенный параметр по Московской области разделить на 1,4 и помножить на нормативную глубину промерзания рассматриваемого региона. Тогда расчетная глубина промерзания основания неотапливаемого дома для Новосибирской области составит 1,54×2,2-1,4=2,42 м.

Какой грунт для фундамента дома лучше

Какие грунты лучше для фундамента будущего здания?

Лучшими грунтами для фундаментов являются скалистые сплошные и слоистые, а также плотно слежавшиеся, скалистые обломочные, песчаные крупнозернистые и плотные глинистые. Совершенно непригодны — растительная земля, торф, а также всякого рода наносные и насыпные грунты.

Насколько песчаный грунт является надежным в средней полосе России?

Прочность песчаных оснований возрастает с увеличением размера частиц песка. Незначительные деформации при воздействии нагрузки испытывают пески средней крупности. На прочности крупных и средних песков обводнение почти не сказывается. Мелкие же пески при увеличении влажности заметно теряют в этом показателе. Однако самыми надежными являются основания, сложенные крупнообломочными грунтами, в которых большая часть массы приходится на частицы диаметром свыше 2 мм; если таких частиц меньше 50% - грунт песчаный. На их несущую способность не оказывает отрицательного воздействия наличие воды или песчаного заполнителя.

Почему нельзя возводить фундаменты на супесях, суглинках, лессовидных грунтах и торфе?

Пылевато-глинистые грунты в зависимости от содержания глинистых частиц делятся на супеси (3-10%), суглинки (10-30%) и глины (более 30%). Все они отличаются нестабильными механическими показателями, определяемыми пористостью и влажностью. С увеличением последних, несущая способность таких грунтов снижается.

С большими трудностями сопряжено устройство фундаментов на илистых грунтах, поскольку такие грунты обладают значительными пористостью и анизотропией.

Лессы и лессовидные грунты в сухом состоянии достаточно устойчивы в силу наличия прочных структурных связей. Однако при увлажнении эти связи нарушаются, и под нагрузкой такой грунт проседает.

Представляющий собой смесь глинистых или песчаных грунтов с растительными остатками, характеризуется медленным развитием осадок, большой сжимаемостью и анизотропией. Кроме того, в торфе зачастую возникают среды, агрессивные по отношению к материалам, из которых устроены подземные конструкции здания.

Глубина промерзания грунта в Московской области и как её уменьшить

Дома могут быть регулярно отапливаемые в зимний период и неотапливаемые (эпизодически отапливаемые или с отложенным периодом регулярного отопления).

Как это влияет на расчетную глубину промерзания грунта в Московской области при возведении зданий?

В неотапливаемых домах расчетная глубина промерзания грунтов увеличивается по сравнению с нормативной в 1,1 раза. В Московской области глубина промерзания грунта считается 1,6 м. Если дома отапливаемые, то расчетная глубина промерзания меньше или равна нормативной (в зависимости от особенностей конструкции цокольной части и температуры в доме).

Например, при температуре в бесподвальном доме не ниже +15°С и устройстве утепленных полов по цокольному перекрытию расчетная глубина промерзания грунтов у наружных фундаментов составляет 1,1м, при температуре не ниже +10°С - 1,26 м, при температуре 0 … +5°С — 1,4 м. В отапливаемом доме с теплым подвалом или техническим подпольем при температуре в нем не ниже + 15°С расчетная глубина промерзания грунтов у наружных стен подвала или фундаментов составит 0,7 м.

Равномерно ли промерзает грунт по периметру дома?

За зимний период с одной стороны дома может намести снега больше, чем с другой. Там, где снега больше, промерзание и пучение меньше. У крыльца, гаража и между ними, если в доме проживают, снег по дорожкам убирается регулярно, а если не проживают — периодически. В этих местах промерзание грунта может быть наибольшее. В отапливаемых домах с цокольным этажом внизу могут находиться топочная, сауна. В местах их расположения примыкающий грунт вообще может не промерзать. Под внутренними фундаментами неотапливаемых домов грунт может промерзать на большую глубину, чем под наружными фундаментами при наличии снега. Под внутренними фундаментами в отапливаемых домах грунт может совсем не промерзать. Если в отапливаемых домах имеются примыкающие , и , то промерзание под ними значительно больше, чем под наружными фундаментами отапливаемой части дома.

Каким должен быть фундамент, если грунт промерзает неравномерно?

В легких домах повышаются требования к пространственной жесткости фундаментов. Чем выше степень пучинистости грунтов, тем большие требования предъявляются к пространственной жесткости и прочности фундаментов. Здесь фундаменты из сборных блоков, имеющие низкие жесткостные характеристики, непригодны для применения. В средне- и сильнопучинистых грунтах необходимо устройство сборно-монолитных или монолитных железобетонных ленточных фундаментов в виде единой пространственной, жесткой рамы с включением в нее всех фундаментов, в том числе внутренних. Такая рама совместно с противопучинной подушкой нивелирует неравномерность деформаций пучения.

Как уменьшить глубину промерзания грунта, если в силу тех или иных причин строительство дома намечено зимой?

Как разморозить грунт?

Есть два способа оттаивания мерзлого грунта: использование солнечного тепла или тепла воды; сжигание твердого, жидкого или газообразного топлива. Самый дешевый — сжигание твердого топлива (дрова) с последующей засыпкой костров древесными опилками. Под воздушным покрытием дрова и опилки тлеют сутками, «отпуская» тепло вниз и прогревая землю в глубину. При разработке мерзлых грунтов применяют машины ударного действия — отбойные молотки. Разработанные в зимнее время траншеи следует засыпать немедленно.

Фундамент представляет собой железобетонную конструкцию прямоугольной формы, которая отвечает за прочность и долговечность здания. Ленточный фундамент применяют для заложения строений из различных материалов, плотность которых больше 1000-1300 кг/м 3 .

Основным параметром при создании ленточного фундамента является то, на какую глубину необходимо копать будущее месторасположения конструкции (глубина прямопропорциональна стоимости возведения).

Закладка

Основные факторы, которые влияют на глубину ленточного фундамента:

  • характеристика грунта (тип, глубина замерзания);
  • грунтовые воды;
  • массивность здания.

Мелкозаглубленный

Для заложения этого вида ленточного фундамента подойдут непучинистые или слабопучинистые виды грунтов (к примеру, песок). Небольшая глубина возможна благодаря свойствам почвы либо равномерному набуханию, что не повлияет на целостность строения.

Подходит для деревянных, кирпичных и пенобетонных построек. Главное условие заложения конструкции - отсутствие грунтовых вод на поверхности почвы. Если все соответствует требованиям, можно сэкономить время на вычислительных операциях и деньги. Все что нужно сделать, это удалить верхний слой грунта и копать до прочного слоя почвы. Глубина 0.5-0.7 метра.

Заглубленный

Если возведение тяжеловесного здания будет проводиться на пучинистой почве (суглина, глина, супесь и т.д.), наиболее подходящим вариантом станет заглубленный вид ленточного фундамента.

  • Перед проектированием проводят вычислительные операции, которые позволяют выявить глубину промерзания почвы и уровень грунтовых вод.
  • Глубину промерзания можно определить с помощью специальных книг и таблиц. Грунтовые воды необходимо измерять самостоятельно. На определенной почве пробуриваем скважину три метра глубиной, помещаем внутрь трубу. На протяжении года производим наблюдения, чтобы выявить на какой уровень поднимаются грунтовые воды.
  • Если воды не достигают глубины промерзания (расстояние в два метра), тогда для заложения основы следует копать траншею глубиной 3/4 от показателя промерзания (от 0.7 метра).
  • В случае если грунтовые воды поднимаются выше установленной отметки, тогда для заложения ленточного фундамента используют показатель промерзания почвы и добавляют еще 0.2-0.3 метра.
  • Для отапливаемых зданий в проектировке ленточного фундамента не рассчитывают без показателя промерзания.

Совет! Заливать фундамент и заканчивать строительство объекта необходимо в тепловой сезон.

  • Для неотапливаемых зданий показатель промерзания почвы нужно увеличивать на десять процентов от первоначального. В отапливаемых сооружениях значение уменьшают на 25%. Если здание обустроено подвалом измерения производят от начала его пола.
  • Сухие и песчаные грунты предполагают заложение ленточного фундамента выше отметки промерзания почвы (подошва должна размещаться на уровне 0.5-0.6 метров от земли).

К сведению! При высоком уровне подводных вод и при повышенной глубине заложения строительство ленточных основ не рекомендуется.

Считают, что основное здание и примыкающая пристройка имеют одинаковую основу. Но если строения разные по массивности и разница оказывающее давление на основание большая, когда копать траншею нужно разной глубины. Всю длину заложения оснащают уступами (высотой от 30 до 60 см), имеющие косы углы, которые соединяют все части конструкции.

Обзор почвы для укладки фундаментов

  1. Глинистая . Обладает нехорошей способностью набухать, из-за чего может выталкивать ленточный фундамент во время замерзания. Это особенно опасно при высоких показателях грунтовых вод. Для заложения ленты применяют глубину ниже уровня вод.

Совет! Для суглинистых почв, которые содержать 10-30% глины, свайно-ленточный вариант основы.

  1. Песчаная . Крупные и среднезернистые частицы хорошо пропускают воду, позволяя ей просачиваться. Однако песок с пылевидной или мелкозернистой структурой задерживает воды. В этом случае заложение можно осуществлять до уровня промерзания. Песчаный грунт всегда сопровождается глубокой усадкой, поэтому будет правильным установка высокого цоколя.

Совет! Если воды все равно затрагивает конструкции, для откачки жидкости рекомендуют установить водоотвод.

  1. Хрящевая . Содержит гравий, крупные камни и хрящ. Расчеты, которые нужно производить: нагрузка на основу и уровень грунтовых вод.
  2. Скальная . Надежный грунт: не набухает и не усаживается. Если почва не позволяет выкопать заглубление, основу можно построить на поверхности.

Глубина закладки и факторы, которые на нее влияют

Чем выше расположение подошвы конструкции, тем меньше будет растрат на бетонную смесь и заливку. Факторами, которые влияют на заглубление основы, являются рельеф территории, чувствительность конструкции и долговечность сооружения.

Верхний слой почвы чаще всего поддается изменениям: сильно сжимается или изменяет свойства под воздействием погодных условий. Такие участки предполагают удаление верхнего слоя грунта, и заглублять основу до устойчивой несущей почвы независимо от глубины ее нахождения.

Некоторые хозяева считают, что заложив ленточный фундамент ниже уровня промерзания, это поможет избавиться от проблем связанных с надежностью сооружения. Не стоит забывать, что этот метод не защитит от пучения почвы под воздействием мороза (особенно если это легкие постройки). Даже если промерзший слой не оказывает особого влияния на подошву, то стенки конструкции находятся под его воздействием. Для уменьшения влияния применяют следующие способы:

  • боковую поверхность основания оснащают скользящим слоем, используя материал с невысоким коэффициентом трения;
  • конструкцию заливают в форме трапеции, которая сужается кверху;
  • почву возле основы оснащают экранами, которые сочетаются с установками для предотвращения переувлажнения (ливневые канализации);
  • пазухи фундаментов засыпают непучинистой почвой.

Перед началом работ по созданию основы, важно определиться какая глубина будет подходящей, чтобы несущий слой смог обеспечить равномерную осадку сооружения.

Уменьшаем глубину фундамента

С целью снижения затрат на создание ленточного фундамента, проводят мероприятия которые направлены на уменьшение заложения основы.

  1. Заменяют пучинистую почву на непучинистую. Для начала необходимо вырыть котлован ниже уровня промерзания почвы, который превышает проектные размеры основы. Далее засыпают все песком и утрамбовывают. Песок обладает хорошей несущей способностью и не позволяет влаге просачиваться.
  2. Установка отмосток. Защита от промерзания и переувлажнения. Отмостка – это площадка выполнена из бетона с уклоном на 10 o . Размер отмосток зависит от типа почвы и от свеса кровли. Просадочные грунты предполагают использование площадки шириной в один метр.
  3. Чтобы понизить уровень грунтовых вод, строительную площадку оснащают кюветами. Установка действует по принципу водоотвода. Если участок постоянно находится под влиянием вод его оснащают основательной дренажной системой.
  4. Для защиты почвы от промерзания под отмостку основы укладывают пенополистирольные плиты.
  5. Основа небольшого деревянного дома может заглубляться на промерзающий уровень небольшой глубины. Фундамент должен быть хорошо армирован и не доставать до подземных вод.

Основание обязательно нужно подсыпать с помощью песка или гравия. От того какую подсыпку используете, зависит выравнивание неравномерной почвы и распределение нагрузки, что предотвращает перекос здания.

Теплоизоляция основы

Для защиты от промерзания почвы мелкозаглубленные конструкции теплоизолируют. Изоляция не позволяет холоду проникать через бетонные слой к зонам, которые находятся ниже фундаментной подошвы.

Для теплоизоляции применяют экструдированный пенополистирол, который не разлагается под воздействием влаги. Чем больше толщина, тем лучше теплоизоляция. 2.5 см пенополистирола имеет сопротивляемость как 1.2 метра почвы. Но необходимо закладывать качественную горизонтальную и вертикальную изоляции. Это предотвратит замерзание и набухание грунта под фундаментом.

Главное, чтобы перед укладкой основания были проведены все необходимые расчеты, только так можно построить устойчивое и надежное сооружение.

Одним из главных условий определения глубины заложения фундаментов на пучинистом грунте является глубина его промерзания. В нашей стране сезонное промерзание грунта может достигать глубины 2,5 метра и более. В зданиях без подвалов стоимость фундаментов такой высоты неоправданно велика, поэтому у многих людей возникают вопросы: можно ли устанавливать фундамент выше глубины промерзания и можно ли уменьшить глубину промерзания грунта?

На эти вопросы есть ответы. Да, можно устанавливать фундаменты на промерзающем грунте. Это фундаменты в виде монолитных армированных плит или армированные ленточные фундаменты на глубоком подстилающем слое из непучинистого грунта. В данном разделе мы не будем их рассматривать, это отдельная большая тема. На глубину промерзания грунта тоже можно оказывать воздействие. Вот об этом и будет эта статья.

Воздействие на грунт температуры воздуха

Весь процесс будем рассматривать в шкале Цельсия приняв за точку отсчета 0°С.

Представим, что на грунте лежит стальной шарик с температурой равной температуре окружающего воздуха. Температуру, которую шарик будет распространять на грунт изобразим в виде векторов (рис. 16).

Рис.16. Температурное воздействие на грунт

Таким образом в течении зимы шарик будет распространять на грунт отрицательную температуру и замораживать грунт вокруг себя по полусфере в масштабе повторяющей контур шарика. Чем больше будет зимой холодных дней, тем дальше в грунт будет распространяться замороженная полусфера. Поскольку зима не вечна, то однажды полусфера достигнет своего максимума и больше увеличиваться не будет. Максимальная глубина, при которой грунт из пластичного превращается в твердый называется глубиной промерзания грунта.

Весной шарик нагревается и начинает расплавлять под собой замороженный грунт. То есть происходит тот же самый процесс, что и при замораживании, только вектор температуры меняет свой знак с минуса на плюс. Если теплых дней будет мало, то грунт не успеет растаять на всю глубину, на которую он промерз. Такой грунт называется вечномерзлым. Сейчас мы его рассматривать не будем. Далее нас интересует только тот грунт, который в летние дни полностью прогревается.

Мы рассмотрели процесс замерзания грунта от действия одного шарика, на самом деле на грунте лежат миллиарды таких условных шариков и воздействуют на него образуя под собой промороженное или оттаявшее поле. Если на это поле разместить, какое-либо строительное сооружение, то оно вызовет в нем аномалию (рис. 17). Возмущение промороженного поля грунта будет различным и зависеть от теплового режима, размещаемого на нем объекта. При размещении неотапливаемого здания грунт под зданием будет промерзать на меньшую глубину, так как температура в здании будет все-таки выше, чем в чистом поле. Если здание будет отапливаемым, то грунт под ним совсем не промерзнет или промерзнет незначительно поскольку будет подогреваться зданием. Поэтому тепловой режим здания учитывается нормативными документами (табл.10) и влияет на глубину заложения фундаментов.


рис. 17-1. Промерзание грунта от воздействия отрицательных температур
рис. 17-2. Промерзание грунта при расположении на нем неотапливаемого сооружения
рис. 17-3. Промерзание грунта при расположении на нем отапливаемого сооружения

Уменьшение отрицательного воздействия промёрзшего грунта

Строительные правила (СП 22.13330.2011) дают определение глубины промерзания «равной средней из ежегодных максимальных глубин сезонного промерзания грунтов (по данным наблюдений за период не менее 10 лет) на открытой, оголенной от снега горизонтальной площадке при уровне подземных вод, расположенном ниже глубины сезонного промерзания грунтов.»

В этом определении важна каждая фраза:

  • «средняя из ежегодных», то есть глубина промерзания может быть больше указанной величины или меньше ее;
  • «открытая, оголенная от снега площадка» говорит о том, что под снегом глубина промерзания грунта будет меньше (чем толще снег, тем меньше промерзание);
  • «при подземных водах ниже глубины промерзания», то есть исследуется сухой грунт, если он будет влажным глубина промерзания увеличится.

В строительных правилах нет, но всем известно, что укатанный грунт вследствие уплотнения становится более теплопроводным и промерзает глубже.

Таким образом исходя только из определения Строительных Правил видим несколько путей уменьшения глубины промерзания. Площадка вокруг строительного сооружения должна быть под снегом, не уплотнена и не увлажнена. В идеале это должно быть перепаханное поле и тогда грунт на нем точно не промерзнет до нормативной глубины даже в самую суровую зиму. Но в реальности все выглядит несколько иначе. К дому походят подъездные дороги, снег с которых по возможности убирают, а осенняя дождевая вода с крыши отводится недалеко от дома.

Наибольшую опасность для фундамента представляют температурные векторы, расположенные в полосе вокруг здания шириной равной глубине промерзания грунта. Если их убрать или каким-то образом уменьшить, то фундамент можно установить выше глубины промерзания грунта (рис.18).


рис. 18. Принципиальная схема уменьшения глубины промерзания

Уменьшить негативные воздействия от замораживания грунта можно как минимум двумя способами:

  1. изменением физико-механических свойств грунта;
  2. теплоизолированием грунта.

Это наиболее простые способы, доступные самодеятельному застройщику.

Изменение физико-механических свойств грунта

Из предыдущих страниц данной темы сайта нам известно, что разные грунты имеют различные свойства. Одни из них при замораживании не изменяют своей структуры, другие увеличиваются в объеме и выталкивают фундамент ломая его в различных плоскостях. Назовем такие грунты восприимчивыми к морозу и невосприимчивыми.


Рис.20. Воспримчивые и невоспримчивые к морозу грунты

Грунты, невосприимчивые к морозу состоят из обломков скальных пород (крупнозернистые пески, гравийные и галечниковые грунты). Ими и нужно заменить пучинистые грунты по периметру здания, целиком или перемешиванием со старым грунтом, вынутым при разработке котлована под фундамент. Для уменьшения влияния атмосферной воды на свойства грунтов её отводят от фундамента. Делают это двумя способами. Поверхностную дождевую и талую воду отводят устройством отмосток вокруг здания с уклоны от 5 до 10%. Воду можно отвести по рельефу местности или в специальную дренажную канаву, засыпанную крупнозернистым грунтом с верхним слоем, оформленным в виде красивых дорожек. В районах строительства с высоким снегом и частыми дождями воду, просачивающуюся к фундаменту, отводят от фундамента посредством подземного дренажа. Перфорированные трубы укладывают вокруг здания в слой крупнозернистого дренирующего грунта, накрывают геотекстилем во избежание заиливания труб и засыпают дренирующим мелкообломочным грунтом. Далее трубами отводят воду от фундамента по уклону местности либо сбрасывают воду в закопанные на отдалении дренирующие колодцы из бочек, засыпанных камнями. Грунт вокруг фундамента не будет удерживать в себе воду, а значит и не будет пучится при морозе (рис. 19).


Рис.20. Схемы отвода воды от фундамента

Подсос грунтовой воды в тело фундаментов и стяжек подвала прерывают устройством обмазочных и оклеечных гидроизоляций, а также устройством подсыпок из мелкообломочных дренирующих грунтов. Такая подсыпка из-за относительно больших расстояний (по молекулярным меркам) между частицами не может удержать в себе воду и уж тем более не может подсосать ее верх и смочить подошву фундамента. Капиллярный подсос так же можно прекратить и расстиланием под фундаментом полиэтиленовой пленки (рис. 21).


Рис.21. Отсекание капилярного подсоса

Теплоизоляция грунта

Если замещение и осушение грунтов вокруг дома предусматривает большой объем земляных работ при котором мы влияем на теплопроводность грунта простой заменой одного типа грунта на другой, то теплоизоляция грунта предполагает оставить прежний грунт с уменьшением его теплопроводности. Делается это установкой теплоизоляции. Я уже не однократно говорил на других страницах сайта и повторю вновь, что распространённый термин «утеплитель» применяется неправильно. Правильное название материала - теплоизоляция. Это перегородка между двумя материалами прерывающая поток тепла. Теплоизоляция сохраняет тепло если укрываемый ей материал был теплый или сохраняет холод, если изначально материал был холодный.


рис. 22. Утепленная отмостка

Укладка полосы теплоизоляции по периметру здания шириной равной глубине промерзания ослабит поток отрицательных температур, проникающих в толщу грунта и он промерзнет на меньшую глубину. На такой грунт можно будет установить фундамент меньшей высоты (рис.22). Конструктивно теплоизоляция грунта совмещают с устройством отмостки и называют утепленной отмосткой. Для того, чтобы мороз не прошел к подошве фундамента через его тело, мостик холода прерывают теплоизоляцией цоколя фундамента (рис. 23).


рис. 23. Теплоизоляция цоколя

Если вы встретите чертежи, показывающие теплоизоляцию по внешней вертикальной стене фундамента, то это утепляется подвальное помещение, а не грунт. Такая теплоизоляция удерживает тепло в подвале, при этом грунт теплом дома не прогревается, и глубина его промерзания не изменяется. То есть теплоизоляция стен фундамента не имеет ничего общего с теплоизоляцией грунта. Это разные конструктивные решения решающие разные задачи.

Укладка полосы теплоизоляции вокруг дома может быть сделана по уровню подошвы фундамента и совмещена с теплоизоляцией подвала (рис. 24). В этом случае решаются одновременно две задачи: утепление подвала и тепловое изолирование грунта. Полоса теплоизоляции здесь будет уже чем на поверхности грунта и зависеть от глубины погружения фундамента.


Рис.24. Утепление подвала и грунта

Утепленную отмостку лучше применять для зданий без подвала, а заглубленную теплоизоляцию для зданий с подвалом.

Достаточно часто после окончания зимнего сезона на фасадах и цоколях коттеджей появляются трещины, перекашиваются дверные коробки или появляются щели в оконных рамах. Причиной этих неприятностей в большинстве случаев является подвижка оснований фундаментов, вызванная силами морозного пучения грунта, которые возникают в результате увеличения объема грунта при его замерзании.

Практически все грунты (кроме скальных) могут подвергаться морозному пучению, но в наибольшей степени этот недостаток присущ глинистым грунтам (суглинки, глины, супеси, мелкие и пылеватые пески), а также пескам, содержащим пылевато-глинистые частицы. Пески гравелистые, крупные и средние, не содержащие пылевато-глинистых частиц, считаются непучинистыми.

Как уже отмечалось, морозному пучению подвергаются грунты, содержащие мельчайшие пылеватые и глинистые частицы. По сравнению с крупными и средними песками, эти частицы очень хорошо связывают воду. При замерзании насыщенная водой масса значительно увеличивается в объеме, начинает давить на находящиеся в грунте конструкции и выталкивать их из земли.

Деформации морозного пучения - результат воздействия на конструкцию так называемых нормальных и касательных сил. Первые возникают под подошвой фундамента в результате замерзания и увеличения объема пучинистого грунта, вторые - из-за вертикального смещения грунта, примерзшего к боковым поверхностям фундамента или к стенам подвала. Кроме того, увеличившийся в объеме замерзший грунт начинает давить перпендикулярно поверхности стен подвалов, вызывая деформацию фундаментов в горизонтальном направлении.

Процесс пучения усиливается при увеличении влажности пучинистых грунтов в результате атмосферных осадков (в частности, обильных осенних дождей), при капиллярном поднятии влаги и повышении уровня грунтовых вод.


В Подмосковье 80% всех грунтов относится к категории пучинистых, а глубина их промерзания в зимнее время может достигать 1,4 м. Поэтому защита фундаментов, труб, проложенных под землей, площадок, покрытых асфальтом или плитками, а также подъездов к гаражам от деформаций, вызванных силами морозного пучения, является насущной необходимостью. Для уменьшения воздействия сил морозного пучения на подземные конструкции при строительстве и ремонте дома рекомендуется выполнить следующие мероприятия (табл. 1).

Таблица 1.

Причины, вызывающие деформации конструкций Конструктивное решение
Воздействие нормальных сил морозного пучения на подошву фундамента Устройство подсыпки (1) толщиной 100-200 мм под подошву фундамента из непучинистого грунта: гравелистого, крупного или средней крупности песка, гравия, щебня или песчано-щебеночной смеси (песок 40%, щебень 60%)
Воздействие касательных сил морозного пучения на боковые поверхности фундаментов и стен подвалов устройство обмазки (2) боковой поверхности фундаментов и стен подвалов, уменьшающей их шероховатость и силы сцепления со смерзшимся пучащимся грунтом на глубину промерзания;
обратная засыпка (3) пазух фундамента на всю глубину промерзания непучинистым грунтом; ширина засыпки по низу выемки должна быть не менее 0,5 м.
Увлажнение пучинистого грунта атмосферными осадками Устройство отмостки (4) с уклоном 3-5 % в сторону от дома, ширина которой превышает ширину выемки для обратной засыпки
Увеличение влажности пучинистого грунта из-за повышения уровня грунтовых вод Устройство дренажа (5) для понижения уровня грунтовых вод и их отвода от фундамента
Заиливание непучинистых грунтов пылевато-глинистыми частицами Защита песчаной подсыпки от проникновения в нее частиц пучинистых грунтов специальными фильтрующими материалами (6)
Защита фундаментов и стен подвалов от деформаций морозного пучения.

При возведении зданий на пучинистых грунтах необходимо под основанием фундамента устроить подушку из промытого песка, гравия или гравелисто-щебеночную подсыпку. Основание из этих непучинистых материалов будет препятствовать воздействию на подошву фундамента нормальных (выталкивающих) сил морозного пучения.

Следует отметить, что при повышении уровня грунтовых вод (в осенний период, а также во время таяния снегового покрова) подсыпка оказывается окруженной водой, насыщенной частицами пылевато-глинистого грунта. Мигрируя вместе с водой, эти частицы проникают в подсыпку и засоряют ее, постепенно превращая непучинистый грунт в пучинистый.

В результате после нескольких лет эксплуатации фундамент вновь оказывается стоящим на грунте, деформирующемся при замерзании. Предотвратить заиливание подсыпки позволяет использование специальных фильтрующих материалов (стеклохолст, "Тайпар" и т.п.), хорошо пропускающих воду, но препятствующих проникновению мельчайших пылевато-глинистых частиц в песчаную подушку.

Для уменьшения воздействия на фундамент касательных сил пучинистый грунт, соприкасающийся с вертикальными поверхностями фундамента или со стенами подвала, рекомендуется заменить непучинистым. Обратную засыпку, которая выполняется по всему периметру здания, необходимо (как и в предыдущем случае) защитить слоем фильтрующего материала (рис. 1).

Значительное увлажнение пучинистых грунтов приводит к тому, что при замерзании они увеличиваются в объеме намного больше, чем грунты с меньшей влажностью. Это влечет за собой возрастание уровня деформаций, и, как следствие, - необходимость более серьезной защиты фундаментов от воздействия сил морозного пучения. Одним из путей уменьшения активности пучинистых грунтов является устройство дренажа, позволяющее понизить влажность грунта за счет снижения уровня грунтовых вод.

Традиционная конструкция представляет собой систему дренажных труб, размещенных в слое промытого гравия, задерживающего частицы грунта. Трубы укладывают с небольшим уклоном, обеспечивающим сток воды в специальный колодец или канализацию.

Несмотря на наличие гравийного фильтра, в процессе эксплуатации дренажной системы происходит постепенное засорение дренажных отверстий частицами грунта. Прочистка дренажа - процесс достаточно трудоемкий, требующий устройства специальных колодцев. Предотвратить засорение системы можно путем укладки вокруг дренажных труб фильтрующего материала ("Тайпар" или стеклохолст), не пропускающего самые мелкие частицы и обеспечивающего эффективную работу дренажной системы на протяжении длительного времени (рис. 2).

При наличии фильтрующего материала укладывать слой гравия вокруг дренажных трубок не обязательно, но рекомендуется для увеличения площади проникновения воды в дренажную систему.

Рис. 2

1. существующий фундамент; 2. дренажные трубки; 3. фльтрующий материал; 4. промытый гравий.

Утепление оснований фундаментов

Рассмотренные мероприятия дают возможность уменьшить воздействие сил морозного пучения, но не ликвидировать их причину. Исключить морозное пучение грунтов позволяет устройство теплоизоляции вокруг здания. Сущность этого способа заключается в том, что находящийся около здания грунт защищается теплоизоляционными материалами от промерзания и тем самым ликвидируется причина, вызывающая морозное пучение.

Для устройства теплоизоляции материала используют утеплители, способные сохранять необходимые теплозащитные качества во влажной среде и воспринимать нагрузки от расположенных над ними конструкций. Этим требованиям в наибольшей степени отвечает пенополиуретан (ППУ) и экструдированный пенополистирол (ЭПП) различных марок.

, является самым эффективным, как в пересчете на требуемую толщину теплоизоляции, так как обладает самым низким коэффициентом теплопроводности, так и по сроку службы, благодаря уникальной химической и биологической стойкости. ППУ бывает в плитах (в последнее время в силу широкого распространения ЭПП мало распространен) и в виде напыления.

имеет наибольшую эффективность утепления при использовании в водонасыщенных грунтах, поскольку, благодаря бесшовности, обеспечивает также дополнительную гидроизоляцию, что устраняет термодинамические конвенционные потоки влаги охлаждающиефундаменты и цокольные этажи.

Обладает самыми лучшими характеристиками по теплопроводности, прочности и долговечности, вследствие наиболее качественной микропористой структуре. Немаловажное значение имеет тот факт, что предлагаемая технология может быть реализована как при возведении новых домов, так и в процессе эксплуатации существующих построек, причем размещение теплоизоляционного материала по периметру здания позволяет не только защитить грунт от промерзания, но и утеплить подвальные помещения (рис. 3).

Грунт вокруг дома выкапывают на глубину 0,5-0,6 м. Размеры выемки должны обеспечить укладку утеплителя шириной не менее 1,2 м. После этого на дно траншеи насыпают слой промытого песка толщиной не менее 200 мм, устраивают небольшой уклон песчаной подушки в сторону от фундамента и тщательно утрамбовывают.

На песок укладывают теплоизоляционные плиты из экструдированного пенополистирола. Толщина плит принимается в зависимости от коэффициента теплопроводности утеплителя (табл. 2).

Таблица 2.

Утеплитель ППУ напылением Пеноглас ППУ напыле-ниием прочие ППУ плиты ЭПП Стиро-форм, Стиродур ЭЭП прочие Пенополисти-рол
Коэффициент теплопроводности утеплителя/ в пироге с учетом щелей Вт/м °С 0,02/ 0,02 0,035/ 0,035 0,03/ 0,045 0,03/ 0,045 0,036/ 0,054 0,04/ 0,065
Толщина утеплителя не менее, мм 40 70 90 90 100 120

Не следует забывать, что потери тепла через наружные углы здания значительно превышают потери через гладь стены, поэтому в зоне углов необходимо предусмотреть дополнительное утепление.

Для этого на расстоянии 1,5-2 м от угла укладывают утеплитель толщиной в 1,4-1,5 раза большей, чем приведено в таблице (рис. 4).

Затем утеплитель засыпают слоем песка или гравия толщиной не менее 300 мм до поверхности грунта. Такое утепление будет препятствовать промерзанию грунта и появлению сил морозного пучения.

Утепление основания крыльца

Много неприятностей владельцам загородных домов доставляют сезонные деформации крыльца и лестницы при входе в дом.

Причиной этого является морозное пучение грунта, вызывающее выпирание относительно легкой конструкции лестницы. Кроме того, основание крыльца или лестницы находится на глубине меньшей, чем подошва фундамента, поэтому силы морозного пучения вызывают особенно сильные деформации этих конструкций.

Наиболее радикальным способом защиты крыльца от выпирания является защита его основания от промерзания (рис. 5). Для этого делают выемку на 700 мм глубже подошвы крыльца или лестницы. На дне выемки устраивают песчаную подсыпку толщиной не менее 400 мм из промытого песка или гравия. На уплотненное основание укладывают плиты ЭПП или ППУ, либо толщина которых принимается в соответствии с вышеприведенной таблицей. Поверх утеплителя насыпают слой песка не менее 50 мм, на который устанавливается лестничный марш или крыльцо. Для защиты основания от промерзания утеплитель должен выступать за границы крыльца на 1,2 м.

Защита подъездов к гаражу от деформаций, вызванных морозным пучением грунтов

На подъезде к гаражу в результате морозного пучения грунтов могут появиться неровности, мешающие нормальному открыванию ворот.

Площадка перед гаражом постоянно очищается от снега, поэтому земля промерзает на большую глубину, что влечет за собой увеличение уровня деформаций грунта, вызванных силами морозного пучения. Предотвратить эти явления можно путем устройства теплоизоляции под дорогой, ведущей к гаражу. Для этого под площадкой или дорогой выкапывают небольшой котлован глубиной около 400 мм. Его ширина с каждой стороны должна быть на 1,2 м больше ширины дороги (рис. 6).

На дне котлована устраивают песчаную или гравийную подсыпку толщиной не менее 100-200 мм, на которую укладывают плиты из экструдированного пенополистирола требуемой толщины. Следует отметить, что, помимо способности сохранять высокие теплозащитные характеристики в грунтовой среде, экструдированный пенополистирол является материалом, способным воспринимать достаточно большие нагрузки, в частности от асфальтового покрытия дороги и машины, стоящей на нем.

Утеплитель, находящийся под полотном дороги, засыпают дополнительным слоем песка толщиной 200 мм, по которому укладывают покрытие из плит или асфальта. На песчаной подсыпке можно установить бортовой камень, заглубив его в песок приблизительно на 200 мм. Утеплитель, расположенный вне эксплуатируемого покрытия, засыпается слоем песка (20-30 мм), после чего выемка заполняется грунтом и выравнивается.

Аналогичным образом утепляют пешеходные дорожки и площадки перед домом, покрытые плиткой. Не следует забывать, что выемка под утеплитель должна быть с каждой стороны на 1,2 м шире площадки или дорожки (рис. 7).

Рис. 7 Рис. 8
  1. песчаная или гравийная подсыпка толщиной 200 мм;
  2. слой песка толщиной 30 мм;
  3. обратная засыпка песком и грунтом;
  4. покрытие площадки;
  5. песчаная подсыпка.
  1. песчаная или гравийная подсыпка толщиной 100 мм;
  2. изолируемые трубы;
  3. гравийно-песчаная смесь толщиной 100 мм;
  4. экструдированный пенополистирол;
  5. засыпка песком, гравием или грунтом.

Защита трубопроводов от промерзания

Рис. 9

Как правило, трубопроводы инженерных коммуникаций (водопровод и канализация) прокладывают ниже уровня промерзания грунта. Однако на входе в дом участки трубопроводов поднимаются ближе к поверхности и оказываются на глубине промерзания, поэтому эту зону необходимо утеплить.

Устройство траншей глубиной 1,5-2 м для прокладки трубопроводов с последующей обратной засыпкой занимает много времени и является достаточно трудоемким процессом. Уменьшить глубину заложения коммуникаций можно путем устройства теплоизоляции, защищающей трубы и прилегающий к ним участок грунта от замерзания (рис. 8). Помимо этого, в пучинистых грунтах, имеющих небольшую глубину заложения, позволит защитить трубы от деформаций грунта, вызванных силами морозного пучения. Следует отметить, что эти работы можно производить не только в процессе прокладки новой линии, но и во время функционирования существующей.

Таблица 3.

На дне отрытой траншеи устраивают утрамбованную песчаную или гравийную подсыпку толщиной около 100 мм, укладывают на нее изолируемые трубы и закрывают их слоем песка или гравия (не менее 100 мм), на который (после утрамбовки) кладут плиты экструдированного пенополистирола или напыляют ППУ. Сверху утеплитель засыпают песком или гравием (20-30 мм), а затем грунтом.

Существующие трубопроводы можно утеплить, расположив теплоизоляцию не только сверху, но и по бокам (рис. 10), а при прокладке новых инженерных коммуникаций их рекомендуется поместить в теплозащитный канал из ППУ (в настоящий момент в продаже имеются трубы с изоляцией ППУ) либо напылить (рис. 11).

При использовании плитного утеплителя, для обеспечения надежности теплоизоляции (минимизация щелей) плиты утеплителя, образующие теплоизоляционный канал, желательно соединить друг с другом при помощи шурупов, однако трубопроводы все же лучше либо приобретать в теплоизоляции ППУ (предизолированные трубы) либо напылять пенополиуретаном имеющиеся.

Любая постройка нуждается в качественном, надежном, правильно спроектированном и обустроенном основании – фундаменте. Он является опорной площадкой, принимающей на себя и обеспечивающей распределение как нагрузок, создаваемых зданием, так и сил воздействия грунта, атмосферных явлений и прочих внешних факторов.

Одним из важнейших этапов проектирования опорной конструкции, вне зависимости от ее разновидности, является определение требуемой глубины заложения. Многие застройщики ошибочно полагают (и многочисленные инструкции, составленные неквалифицированными авторами, лишь усугубляют положение дел), что глубину заложения фундамента нужно определять, ориентируясь исключительно на уровень промерзания грунта. Да, это один из наиболее значимых показателей, но в действительности факторов, требующих учета и анализа, гораздо больше: особенности постройки, инженерно-геологические условия, рельеф площадки, уровень прохождения подземных вод и т.д.

Способы закладки фундамента

Знание методики определения необходимой глубины заложения опоры позволит вам спроектировать и получить в итоге максимально надежную конструкцию, способную служить десятки лет безо всяких проблем и нареканий. Даже если вы планируете поручить обустройство опоры сторонним специалистам, разобравшись в нюансах рассматриваемого расчета, вы сможете проконтролировать правильность выполняемых ими действий, т.к. неверный выбор глубины заложения в будущем приведет к катастрофическим последствиям – начнутся процессы деформации и последующего разрушения опоры, а вместе с ней и вышестоящего здания.

Следуя элементарной логике, можно прийти к примерно такому выводу: чем глубже заложишь фундамент, тем лучше он будет противостоять всевозможным воздействиям, и тем дольше прослужит. На практике ситуация обстоит иным образом. Далее вам предлагается ознакомиться с самыми популярными мифами о глубине заложения фундамента и узнать, как нужно делать правильно.

Глубже строишь – дольше служит

Даже опытные труженики сферы строительства нередко заблуждаются, полагая, что внушительная глубина заложения при любых обстоятельствах является гарантией надежности и долговечности конструкции. В некоторых ситуациях это срабатывает, но не стоит думать, что большая глубина заложения основания будет являться 100%-м залогом высокой прочности опоры.

На практике обязательно выполняется квалифицированный и довольно объемный расчет, предполагающий предварительное проведение инженерно-геологических исследований, определение типа почвы на участке, нахождение уровня прохождения грунтовых вод и т.д. Многое зависит и от конструктивных особенностей возводящегося здания (материал, число этажей, надстройки и т.п.). К примеру, к фундаменту для бани при прочих равных условиях будут предъявляться менее строгие требования, нежели к опоре, рассчитанной на использование в комплексе с жилым домом, но к определению оптимальной глубины заложения нужно одинаково ответственно и грамотно подходить в обоих случаях.

Полезный совет! Вышеперечисленные моменты интересным и понятным простому обывателю языком подробно изложены в книге «Не зарывайте фундаменты вглубь» под авторством В.С. Сажина. Рекомендуем к ознакомлению.

Файл для скачивания – В.С. Сажин «Не зарывайте фундаменты вглубь». Расчеты, таблицы, конструкция фундаментов, правила выбора опорных конструкций, правила армирования

Одна лишь глубина важна?

Как отмечалось, фундамент не во всех ситуациях должен быть заглубленным, даже если строительство ведется на не самом спокойном грунте – существуют строительные технологии, позволяющие увеличить твердость и плотность практически любой почвы. Ввиду этого, если запланировано строительство компактной частной бани, а не огромного жилого дома, в «закапывании денег в землю» не будет никакого смысла.

Наряду с этим, должны учитываться характерные особенности строительной площадки. К примеру, распространенной проблемой является высокое прохождение грунтовых вод. В случае возведения бани, этот вопрос можно решить посредством обустройства эффективного дренажа вокруг опорной конструкции, а не за счет заглубления фундамента.



Еще одной распространенной проблемой являются оползни. Наличие таковых может привести к катастрофическим последствиям в виде провисания, деформации и разрушения опорной конструкции. В данном случае целесообразнее будет заняться укреплением грунта, а не фундамента.





К примеру, в случае с песчаными грунтами хорошо проявляет себя технология силикатизации, предполагающая обработку грунта вокруг опорной конструкции с помощью смеси, включающей равные доли воды и жидкого стекла. Увлажненный таким составом песок тщательно утрамбовывается. В результате грунт становится более прочным.

Еще один эффективный способ предполагает использование специальных химических реагентов. В данном случае на строительной площадке пробуриваются небольшие скважины, через полученные углубления в землю вливаются смоляные составы, что приводит к эффективному упрочнению слабого грунта с минимальными финансовыми затратами.

Нормативно-технические положения

Положения в отношении оптимальной глубины заложения опорных конструкций закреплены соответствующей нормативной документацией. В данном случае это СНиП под номером 2.02.01-83.

Файл для скачивания. СНиП 2.02.01-83. СП 22.13330.2011. ОСНОВАНИЯ ЗДАНИЙ И СООРУЖЕНИЙ.

От чего зависит глубина заложения опорных конструкций?

На этом этапе проектирования внимание уделяется следующим моментам:

  • назначению и габаритам постройки, которая будет возводиться на опоре;
  • уровню нагрузок, создаваемых строением;
  • глубине обустройства опорных конструкций ближайших и примыкающих зданий;
  • уровню прохождения инженерных коммуникаций;
  • особенностям рельефа местности;
  • значимые инженерно-геологическим особенностям строительной площадки. Сюда входят: свойства почвы, особенности имеющихся напластований и т.п.;
  • гидрогеологическим особенностям местности и характеру их потенциальных изменений при проведении строительных работ и в ходе последующей эксплуатации конструкции;
  • вероятности размыва почвы у опорных конструкций, возводящихся неподалеку от водоемов;
  • показателю уровня сезонных промерзаний почвы.

При определении этого значения используется усредненный показатель наибольших ежегодных глубин промерзания. Для правильного проведения расчета нужно брать сведения, полученные в ходе минимум 10-летнего наблюдения. Непосредственно для наблюдений выбирается ровная не заснеженная площадка. Уровень грунтовых вод, при этом, должен быть ниже по отношению к показателю сезонного промерзания почвы.

Если результаты многолетних наблюдений отсутствуют (а именно так зачастую и случается) выполняются соответствующие теплотехнические расчеты. Для регионов, на территории которых почва не промерзает больше чем на 250 см, допустимо использование следующей формулы определения нормативного показателя глубины промерзания.

Коэффициент Mt в вышеприведенной формуле указывает на суммарное значение абсолютных среднемесячных минусовых температур зимой для конкретного региона. Эту информацию следует уточнить индивидуально, обратившись в ближайшую гидрометеорологическую станцию или ознакомившись с соответствующей справочной информацией.

Коэффициент d0 определяется по типу почвы на участке. Зависимость следующая:

  • глинистые и суглинистые грунты – 0,23 м;
  • пылеватые, мелкопесчанистые и супесные грунты – 0,28 м;
  • средние, крупные, а также гравелистые пески – 0,3 м;
  • крупнообломочные – 0,34 м.

Что такое расчетная глубина промерзания?

Для ее нахождения используется следующая формула.

Коэффициент dfn здесь указывает на нормативную глубину промерзания (руководство по определению этого показателя приводилось выше).

Показатель kh является коэффициентом, отсылающим к воздействию теплового режима строения. В случае с наружными опорными конструкциями отапливаемых зданий этот параметр берется из следующей таблицы.

При обустройстве же оснований неотапливаемых зданий данный коэффициент принимается равным 1,1.

Определение показателя расчетной глубины промерзания осуществляется в соответствии с теплотехническим расчетом и в тех ситуациях, когда опорная конструкция укомплектовывается постоянной теплоизоляцией. Также данное положение актуально для ситуаций, когда особенности температурной эксплуатации возводящегося здания могут оказывать значимое воздействие на температурные показатели почвы, к примеру, в случае с банями.

Показатель глубины заложения, актуальный для отапливаемых конструкций, также принимается в случае возведения внешних и внутренних оснований. Во втором случае расчетный показатель промерзания во внимание не принимается.

Расчетное значение также может не учитываться, если:

  • основание обустраивается на мелкопесчанистом грунте и в ходе исследований был подтвержден факт отсутствия пучинистости, а также в ситуациях, когда предварительные исследования и последующие расчетные мероприятия позволили установить, что деформационные процессы, возникающие в ходе промерзания-оттаивания грунта, не оказывают отрицательного воздействия на эксплуатационную пригодность конструкции;
  • запланировано проведение соответствующих мероприятий, направленных на исключение промерзания почвы.

Для нахождения глубины обустройства опорных конструкций отапливаемых зданий, планировка которых включает необогреваемые подполья и подвальные помещения, используйте следующую таблицу. Считайте от пола первого этажа до подвала.

От теории к практике

Ранее вы имели возможность ознакомиться с перечнем факторов, принимаемых во внимание в процессе проектирования фундамента, а также получили теоретическое представление об основных расчетных мероприятиях на этапе планирования основания. Теперь вам предлагается узнать, как проводится определение оптимальной глубины заложения на практике.

На что обращаем внимание?

Ранее приводился довольно обширный перечень факторов, определяющих оптимальную глубину заложения фундамента. На практике застройщики обращают внимание лишь на некоторые из них. Об этом в таблице.

Таблица. Факторы, определяющие глубину заложения

Факторы Пояснения
В ходе изучения инженерно-геологических условий определяется слой грунта, способный взять на себя функции естественного несущего основания для опорной конструкции.

На практике при определении глубины заложения придерживаются нижеперечисленных правил:

Глубина заложения – от 50-70 см;

Заглубление опорной конструкции в естественный несущий слой – от 10-20 см;

По возможности опорное основание закладывается ниже по отношению к грунтовым водам. Соблюдая это правило, застройщик избавляет себя от необходимости сооружения водоотлива. При этом будут отсутствовать нарушения природной структуры почвы. Если возможность заглубиться ниже уровня грунтовых вод ввиду каких-либо обстоятельств отсутствует, прибегают к обустройству водоотлива, шпунтованного крепления стенок ямы, в результате чего величина суммарных затрат на проведение необходимых земляных работ существенно возрастает.

Среди значимых климатических факторов, имеющих наибольшее значение при установлении глубины заложения опорных конструкций различного назначения, выделяют, во-первых, глубину промерзания почвы на участке, во-вторых, особенности оттаивания грунта, связанные, прежде всего, с уровнем прохождения подземных вод.

Некоторые типы грунтов в процессе промерзания поддаются пучению, т.е. увеличивают свой объем. В подобных условиях фундамент строения должен быть заложен строго ниже точки глубины промерзания.

К появлению упомянутого морозного пучения приводит преимущественно перемещение влаги, содержащейся в нижележащих грунтовых слоях, к фронту промерзания.

Ввиду этого, большое значение при определении оптимальной глубины обустройства опорной конструкции должно уделяться показателю уровня прохождения подземных вод в холодный период года.

К категории пучинистых относятся пылевато-глинистые грунты и разновидности грунтов, состоящие из мелкого и пылеватого песка. При выполнении строительных работ на таких почвах, глубину обустройства опоры определяют по показателю уровня промерзания, если подземные воды проходят менее чем на 200 см ниже точки промерзания.

Среди значимых конструктивных особенностей возводящегося строения, влияющих на итоговое значение глубины заложения основания, выделяют:

Наличие цокольных/подвальных помещений и их габариты;

Наличие приямков и их размерные характеристики;

Наличие и габариты опорных конструкций для различного оборудования, к примеру, банной печи;

Наличие подземных коммуникаций и их габаритные характеристики;

Характер нагрузок, поступающих на опорную конструкцию, и их величину.

Как правило, при наличии подземных помещений опорные конструкции заглубляют на 50 см ниже пола таковых. В случае обустройства столбчатой опорной конструкции, упомянутый показатель может увеличиваться до 150 см.

Важно! После определения оптимальной глубины заложения по всем значимым факторам, выбирается наибольший найденный показатель, и именно он используется в качестве расчетного.

Существует довольно много разновидностей опорных конструкций, среди которых наибольшее распространение в частном строительстве получили ленточный, столбчатый и плитный фундаменты. Далее вам предлагается ознакомиться с рекомендациями в отношении оптимальной глубины заложения каждого из них.

Ленточные опоры

Фундамент ленточного типа занимает первое место по популярности среди частных застройщиков. Такие конструкции характеризуются более легким возведением и меньшими финансовыми затратами, если сравнивать с монолитными плитными опорами.

Конструкция ленточного основания представляет собой армированную бетонную полосу, обустраиваемую под стенами и перегородками строения. Основание принимает нагрузки, создаваемые вышестоящим строением, и обеспечивает их равномерное распределение на грунт.

Важно! Показатель несущей способности почвы на участке должен превышать нагрузки, передаваемые фундаментной конструкцией от здания. Сведения в отношении необходимых подробно освящались в соответствующей публикации.

Основание ленточного типа подходит для использования на однородных грунтах с отсутствующей либо слабовыраженной пучинистостью. Лучше, чтобы грунтовые воды проходили как можно ниже. Не рекомендуется обустраивать бетонные ленты на подтапливаемых территориях.

Рассматриваемый фундамент запрещен к использованию на торфяных и прочих биогенных органических почвах. Также от применения такой конструкции следует воздерживаться, если строительный участок располагается на неоднородной почве либо на стыке различающихся типов грунтов. Не рекомендуется использовать ленточный фундамент на водонасыщенном пылеватом песчаном грунте и водонасыщенных глинистых грунтах.

При определении конфигурации и геометрических параметров опорного основания нужно учитывать нижеперечисленные факторы:

  • нагрузки, создаваемые вышестоящим зданием;
  • характеристики почвы (пучинистость, показатели несущей способности);
  • климат на местности;
  • свойства строительных материалов.

Минимально допустимую глубину обустройства ленточной опорной конструкции определяют по уровню промерзания почвы, высоте залегания подземных вод, а также особенностям пучинистости грунта. Зависимость следующая: чем глубже промерзает грунт и чем ближе вода проходит к поверхности, тем сильнее пучинистость почвы, и тем более выраженное воздействие оказывается на опору снизу. Под воздействием данных сил основание будет сдавливаться и выталкиваться вверх. Для уменьшения интенсивности выраженности этих воздействий и осуществляется заглубление фундамента.

Полезный совет! Помимо заглубления опорной конструкции, выраженность показателей морозного пучения почвы может регулироваться посредством обеспечения теплоизоляции опоры, монтажа несъемной теплозащищенной опалубки на этапе обустройства фундамента, а также путем обеспечения водоотведения и организации дренажа, уплотнения грунта, его частичной либо полной замены.

В соответствии с актуальными строительными нормами, наименьшее допустимое заглубление ленточной бетонной опоры на всех малопучинистых и непучинистых почвах (за исключением глинистого и скального грунтов) составляет 450 мм. При работе на скальном грунте, ввиду физической невозможности обеспечения значительного заглубления, допускается обустройство опорной конструкции непосредственно на поверхности почвы. При обустройстве ленточной опорной конструкции на глинистых почвах и прочих грунтах пучинистого типа, основание заглубляется минимум на 750 мм (в среднем выдерживают 90-100-сантиметровый показатель).

Если грунт чрезмерно мягкий и присутствует вероятность его подвижности (в эту группу входят водонасыщенные почвы, супеси, пески), а также при низких показателях несущей способности поверхностных грунтовых слоев, ленточный фундамент может быть заглублен до уровня расположения шаров грунта, характеризующихся стабильными свойствами и более высокой несущей способностью.

В качестве ориентиров можете использовать значения, приведенные в следующей таблице.

Расчетная глубина промерзания условно непучинистого грунта Расчетная глубина промерзания слабо пучинистого грунта твердой и полутвердой консистенции
до 2 метров до 1 метра 0,5 м
до 3 метров до 1,5 метров 0,75 м
более 3 метров от 1,5 до 2,5 метров 1 м
от 2,5 до 3,5 метров 1,5 м

Полезный совет! Вне зависимости от условий на местности, максимальным допустимым показателем заглубления в экономическом и в целом разумном плане является 250 см.

Если фундамент обустраивается на песчаном непучинистом грунте, на показатель глубины промерзания можно не обращать внимания. Также избавиться от зависимости с глубиной промерзания можно при обеспечении вертикального утепления фундамента и горизонтальной теплоизоляции грунта.

Приведенные выше значения могут претерпевать изменения, если грунтовые воды располагаются относительно близко к поверхности. При таких обстоятельствах фундамент придется заглублять на более существенный уровень. Можете ориентироваться на значения, приведенные в следующей таблице.

Владельцам участков, расположенных на пучинистых почвах с высокими грунтовыми водами, следует подумать над использованием другой опорной конструкции, к примеру, свайно-ростверковой. Такому основанию не страшны грунтовые воды и морозные пучения.

Показатели нормативной глубины промерзания представлены в таблице.

В основе этой конструкции – опорные столбы, обустраиваемые в углах строения и на пересечениях стен и перегородок. При необходимости дополнительные опоры сооружаются под тяжелыми простенками, массивными балками и в прочих участках, характеризующихся увеличенной нагрузкой.

В целях обеспечения равномерности распределения нагрузок, создаваемых вышестоящим строением, а также организации работы столбов в качестве цельной опорной конструкции и для увеличения устойчивости фундамента к воздействующим на него силам, обустраивается ростверк, представленный обвязочными балками, соединяющими элементы опорной конструкции.

  • при возведении строений, не имеющих подвальных помещений;
  • при строительстве зданий с легкими стенами, выполненными по каркасной, щитовой и подобным технологиям;
  • при возведении кирпичных стен при наличии необходимости обеспечения глубокого заложения;
  • при более высокой устойчивости столбчатого фундамента к осадочным процессам в почве (по сравнению с другими разновидностями фундаментов);
  • при необходимости максимального минимизирования выраженности сил морозного пучения (столбы в меньшей степени подвержены упомянутому явлению по сравнению с ленточными и плитными конструкциями);
  • при прочих условиях, когда использование ленточного фундамента является экономически невыгодным или нецелесообразным ввиду каких-либо обстоятельств.

Столбчатая опорная конструкция имеет ряд преимуществ.

Во-первых, на ее обустройство обычно затрачивается не более 20% от расходов на весь дом (для сравнения, в случае с фундаментами других типов этот показатель может возрастать до 30% и более).

Во-вторых, через отдельные опоры происходит более эффективное распределение нагрузок, нежели посредством сплошного ленточного основания. Столбы обеспечивают равнозначные показатели давления на почву, в результате чего отмечается уменьшение выраженности осадки по сравнению с ранее рассмотренными ленточными конструкциями. Благодаря этому появляется возможность уменьшения суммарной площади основания.

Опорно-столбчатая конструкция – фото

При определении оптимального показателя глубины заложения столбов, обращают внимание на нижеперечисленные факторы:

  • глубину промерзания почвы. Этот параметр остается значимым при проектировании любого фундамента. В идеале столбы должны быть заглублены на 20-30 см ниже упомянутой отметки, но необходимость в этом возникает не всегда. Исключительные случаи будут рассмотрены отдельно;
  • тип грунта и особенности его состава. Лучший вариант – песчаный грунт. Вода практически мгновенно проходит через такую почву, плюс ее несущая способность сохраняется на очень высоком уровне. От строительства на торфяниках и илистых грунтах следует воздерживаться. Единственный возможный вариант в данном случае сводится к частичной (еще лучше – полной) замене имеющейся почвы песчаником;
  • глубину залегания подземных вод. Этот момент определяется в ходе соответствующих предшествующих исследований. Практически 100%-м подтверждением высокого уровня грунтовых вод может служить наличие поблизости любого природного водоема. В данном случае прибегают к организации систем дренажа или устройству гидроизоляции.

Помимо природных факторов, проектировщик должен обращать внимание на нижеперечисленные положения:

  • предполагаемый вес готового строения;
  • вес опорных столбов;
  • вес предметов внутреннего обустройства постройки и находящихся в ней людей;
  • временные нагрузки, к примеру, снег.

Наиболее выраженное отрицательное воздействие на опорные конструкции оказывают силы морозного пучения. Ввиду этого, строительству практически любого фундамента предшествует оценка степени пучинистости грунта. Большинство застройщиков придерживается принципа, в соответствии с которым при работе на грунтах пучинистого типа фундаменты закладываются в среднем на 200-300 мм ниже расчетного показателя глубины промерзания в холодное время года. Наряду с этим, возведение малонагруженных построек, к примеру, таких как частная баня, имеет свои исключительные особенности.

Фундаменты подобных строений подвергаются силам пучения, в большинстве случаев превосходящим общие нагрузки, создаваемые вышерасположенным строением. Из-за такой разности по итогу и происходят разнообразные деформации опоры.

Ввиду этого, планируя постройку бани или любого другого здания без подвального помещения на грунте, склонном к сезонному пучению, лучше отдавать предпочтение незаглубленной либо мелкозаглубленной разновидности опорной конструкции.

Мелкозаглубленными называют опоры, глубина заложения которых составляет 50-70% от нормативного показателя промерзания почвы. К примеру, в соответствии с нормативным показателем грунт промерзает на 150 см. В данном случае мелкозаглубленный фундамент надо заглублять минимум на 75 см.

Если грунт является пучинистым и глубоко промерзает, придется делать заглубленную опорную конструкцию, обустраиваемую, как уже отмечалось, в среднем на 20-30 см ниже точки промерзания. При таких обстоятельствах хорошо себя показывают сборные и монолитные столбы из армированного бетона. Подобные конструкции в незначительной мере подвержены воздействию сил пучения.

Если для обустройства опор применяются камни, неармированный бетон, мелкие блоки, кирпич, стены фундамента должны сужаться кверху – благодаря этому будет, во-первых, обеспечено равномерное распределение нагрузок, создаваемых строением, во-вторых, уменьшен расход строительных материалов.

Среди дополнительных мер, способствующих уменьшению выраженности сил морозного пучения, следует отметить нижеперечисленные положения:

  • покрытие боковин столбов материалами, способствующими уменьшению трения почвы. К числу таких материалов относятся разнообразные пластичные смазки, полимерные пленки, эпоксидные смолы, битумные мастики и т.д.;
  • утепление верхнего шара грунта вокруг опорной конструкции. Прекрасным вариантом является сооружение утепленной отмостки.

Есть ряд ограничений, наличие которых является прямым противопоказанием к применению столбчатых опор.

  1. Во-первых, столбчатый фундамент нельзя использовать на слабых грунтах, а также почвах, склонных к горизонтальным подвижкам, т.к. столбы характеризуются малой стойкостью к опрокидываниям. Чтобы нивелировать боковые сдвиги, обустраивается жесткий армированный ростверк. В случае его применения затраты на возведение столбчатого фундамента практически уровняются с расходами на заливку армированной ленты.

  2. Во-вторых, столбы лучше не обустраивать на участках, расположенных на слабонесущих (торфяных, водонасыщенных глинистых и т.п.) грунтах, в особенности в случае возведения тяжелых домов (с использованием железобетонных плит перекрытия, с кирпичными стенами толщиной от 50 см и т.д.).

  3. В-третьих, лучше не строить ничего на столбчатых опорах, если участок расположен в местности с существенными перепадами высот (более 200 см).

    На участках со сложным рельефом столбчатое основание – не лучший вариант

Плитные опоры

Монолитная плитная опорная конструкция характеризуется высокими показателями надежности, прочности и долговечности, но и требует соответствующих трудовых и материальных вложений на обустройство. Применение таких опор является целесообразным при работе на слабых разновидностях грунтов, к примеру, почвах с высоким содержанием органики.

В случае использования плиты отмечается уменьшение давления на почву. Происходит это по той причине, что плита опирается на основание всей поверхностью, благодаря чему обеспечивается равномерное распределение нагрузок, создаваемых вышестоящим строением.

На плитном фундаменте можно строить здания из любых материалов. В особенности часто подобные опоры выбираются для применения в комплексе с каменными конструкциями, т.е. строениями, возведенными из блоков, кирпичей и т.п.

Как и в случае с вышерассмотренными разновидностями оснований, глубину заложения определяют в соответствии с характерными особенностями грунта и нагрузками, создаваемыми строением: чем они выше, тем толще делается плита и тем глубже она закладывается.

Плитные фундаментные конструкции не заглубляют до уровня промерзания. Незаглубленные опоры и вовсе возводят на уровне грунта. В строительной практике получила популярность т.н. «плавающая плита» – такой фундамент заглубляется максимум до 1 м, а силами нижележащего утрамбованного песчано-гравийного слоя обеспечивается видимость «плавающей» железобетонной плиты. Такая конструкция характеризуется большей устойчивостью к деформационным воздействиям со стороны грунта.

Наибольшей же популярностью пользуется мелкозаглубленная разновидность плитного фундамента, закладываемая на глубину 200-500 мм. Под плитой обустраивается уплотненная «подушка» из песка и щебенки суммарной толщиной порядка 30 см. Плита армируется по всей площади. Подобная конструкция характеризуется высокой стойкостью к переменным нагрузкам, возникающим при перепадах температуры и приводящим к пучению грунта.

Мелкозаглубленная
разновидность плитного фундамента

Таким образом, плитные фундаменты подходят для использования на проблемных грунтах: подвижных, просадочных, пучинистых и т.п.

Среди недостатков такой конструкции нужно отметить большой объем земляных работ, а также повышенные затраты на приобретение высококачественных армирующих элементов и бетона. Используемые материалы должны соответствовать следующим минимальным требованиям:

  • марка бетона – от М200;
  • арматура – стальная, диаметром не менее 1,2 см.

Таким образом, монолитная армированная бетонная плита хорошо подходит для использования на грунтах с высокими подземными водами, а также на слабых и разнородных почвах. При таких обстоятельствах расходы на обустройство плитной конструкции будут оправданными и целесообразными. В противном случае специалисты рекомендуют обращать внимание на более экономически выгодные решения в виде вышерассмотренных столбчатого и ленточного оснований.

Дополнительно вам предлагается ознакомиться с таблицами, характеризующими различные типы грунтов, а также отражающими зависимость показателя глубины заложения опорной конструкции от характеристик грунта и высоты прохождения подземных вод.




Удачной работы!

Видео – Глубина заложения фундамента