1. ฟังก์ชันเชิงเส้นแบบเศษส่วนและกราฟ

ฟังก์ชันที่อยู่ในรูปแบบ y = P(x) / Q(x) โดยที่ P(x) และ Q(x) เป็นพหุนาม เรียกว่า ฟังก์ชันตรรกยะเศษส่วน

คุณคงคุ้นเคยกับแนวคิดเรื่องจำนวนตรรกยะอยู่แล้ว เช่นเดียวกัน ฟังก์ชันตรรกยะเป็นฟังก์ชันที่สามารถแสดงเป็นผลหารของพหุนามสองตัวได้

หากฟังก์ชันตรรกยะเศษส่วนเป็นผลหารของฟังก์ชันเชิงเส้นสองฟังก์ชัน - พหุนามของดีกรีแรกคือ ฟังก์ชั่นของแบบฟอร์ม

y = (ax + b) / (cx + d) จากนั้นเรียกว่าเศษส่วนเชิงเส้น

โปรดทราบว่าในฟังก์ชัน y = (ax + b) / (cx + d), c ≠ 0 (ไม่เช่นนั้นฟังก์ชันจะกลายเป็นเส้นตรง y = ax/d + b/d) และ a/c ≠ b/d (มิฉะนั้น ฟังก์ชันคงที่) ฟังก์ชันเศษส่วนเชิงเส้นถูกกำหนดไว้สำหรับจำนวนจริงทั้งหมด ยกเว้น x = -d/c กราฟของฟังก์ชันเชิงเส้นแบบเศษส่วนไม่มีรูปร่างแตกต่างจากกราฟ y = 1/x ที่คุณทราบ เส้นโค้งที่เป็นกราฟของฟังก์ชัน y = 1/x เรียกว่า อติพจน์- เมื่อค่าสัมบูรณ์เพิ่มขึ้นอย่างไม่จำกัด ฟังก์ชัน y = 1/x จะลดลงอย่างไม่จำกัดในค่าสัมบูรณ์ และกิ่งทั้งสองของกราฟจะเข้าใกล้เส้น Abscissa เส้นทางขวาเข้าใกล้จากด้านบน และเส้นซ้ายจากด้านล่าง เส้นตรงที่เรียกว่ากิ่งก้านของแนวทางไฮเปอร์โบลา เส้นกำกับ.

ตัวอย่างที่ 1

y = (2x + 1) / (x – 3)

สารละลาย.

ลองเลือกทั้งส่วน: (2x + 1) / (x – 3) = 2 + 7/(x – 3)

ตอนนี้เห็นได้ง่ายว่ากราฟของฟังก์ชันนี้ได้มาจากกราฟของฟังก์ชัน y = 1/x โดยการแปลงต่อไปนี้: เลื่อนไป 3 ส่วนหน่วยไปทางขวา ยืดไปตามแกน Oy 7 ครั้ง และเลื่อนไป 2 ส่วนของหน่วยขึ้นไป

เศษส่วนใดๆ y = (ax + b) / (cx + d) สามารถเขียนได้ในลักษณะเดียวกัน โดยเน้นที่ "ส่วนจำนวนเต็ม" ดังนั้น กราฟของฟังก์ชันเชิงเส้นเศษส่วนทั้งหมดจึงเป็นไฮเปอร์โบลา ซึ่งเลื่อนไปในรูปแบบต่างๆ ตามแกนพิกัด และยืดไปตามแกน Oy

ในการสร้างกราฟของฟังก์ชันเศษส่วน-เชิงเส้นใดๆ ก็ตาม ไม่จำเป็นต้องแปลงเศษส่วนที่กำหนดฟังก์ชันนี้เลย เนื่องจากเรารู้ว่ากราฟเป็นไฮเปอร์โบลา จึงเพียงพอที่จะหาเส้นตรงที่กิ่งก้านของกราฟเข้าใกล้ นั่นคือเส้นกำกับของไฮเปอร์โบลา x = -d/c และ y = a/c

ตัวอย่างที่ 2

ค้นหาเส้นกำกับของกราฟของฟังก์ชัน y = (3x + 5)/(2x + 2)

สารละลาย.

ไม่ได้กำหนดฟังก์ชันไว้ที่ x = -1 ซึ่งหมายความว่าเส้นตรง x = -1 ทำหน้าที่เป็นเส้นกำกับแนวตั้ง ในการค้นหาเส้นกำกับแนวนอน เรามาดูกันว่าค่าของฟังก์ชัน y(x) เข้าใกล้ค่าใดเมื่ออาร์กิวเมนต์ x เพิ่มขึ้นเป็นค่าสัมบูรณ์

เมื่อต้องการทำเช่นนี้ ให้หารทั้งเศษและส่วนของเศษส่วนด้วย x:

y = (3 + 5/x) / (2 + 2/x)

เมื่อ x → ∞ เศษส่วนจะมีแนวโน้มเป็น 3/2 ซึ่งหมายความว่าเส้นกำกับแนวนอนคือเส้นตรง y = 3/2

ตัวอย่างที่ 3

สร้างกราฟฟังก์ชัน y = (2x + 1)/(x + 1)

สารละลาย.

เรามาเลือก “ทั้งหมด” ของเศษส่วนกัน:

(2x + 1) / (x + 1) = (2x + 2 – 1) / (x + 1) = 2(x + 1) / (x + 1) – 1/(x + 1) =

2 – 1/(x + 1)

ตอนนี้เห็นได้ง่ายว่ากราฟของฟังก์ชันนี้ได้มาจากกราฟของฟังก์ชัน y = 1/x โดยการแปลงต่อไปนี้: การเลื่อนไปทางซ้าย 1 หน่วย การแสดงแบบสมมาตรเทียบกับ Ox และการเปลี่ยนแปลงโดย แบ่งหน่วย 2 หน่วยขึ้นไปตามแกน Oy

โดเมน D(y) = (-∞; -1)ᴗ(-1; +∞)

ช่วงของค่า E(y) = (-∞; 2)ᴗ(2; +∞)

จุดตัดกับแกน: c Oy: (0; 1); ค อ็อกซ์: (-1/2; 0) ฟังก์ชันจะเพิ่มขึ้นในแต่ละช่วงของโดเมนคำจำกัดความ

คำตอบ: รูปที่ 1

2. ฟังก์ชันตรรกยะเศษส่วน

พิจารณาฟังก์ชันตรรกยะเศษส่วนในรูปแบบ y = P(x) / Q(x) โดยที่ P(x) และ Q(x) เป็นพหุนามที่มีดีกรีสูงกว่าค่าแรก

ตัวอย่างของฟังก์ชันตรรกยะดังกล่าว:

y = (x 3 – 5x + 6) / (x 7 – 6) หรือ y = (x – 2) 2 (x + 1) / (x 2 + 3)

หากฟังก์ชัน y = P(x) / Q(x) แทนค่าผลหารของพหุนามสองตัวที่มีดีกรีสูงกว่าฟังก์ชันแรก ตามกฎแล้วกราฟของมันจะซับซ้อนกว่า และบางครั้งอาจเป็นเรื่องยากที่จะสร้างมันให้แม่นยำ พร้อมรายละเอียดทั้งหมด อย่างไรก็ตาม บ่อยครั้งก็เพียงพอแล้วที่จะใช้เทคนิคที่คล้ายกับที่เราได้แนะนำไปแล้วข้างต้น

ให้เศษส่วนเป็นเศษส่วนแท้ (n< m). Известно, что любую несократимую рациональную дробь можно представить, и притом единственным образом, в виде суммы конечного числа элементарных дробей, вид которых определяется разложением знаменателя дроби Q(x) в произведение действительных сомножителей:

P(x)/Q(x) = A 1 /(x – K 1) m1 + A 2 /(x – K 1) m1-1 + … + A m1 /(x – K 1) + …+

L 1 /(x – K s) ms + L 2 /(x – K s) ms-1 + … + L ms /(x – K s) + …+

+ (B 1 x + C 1) / (x 2 +p 1 x + q 1) m1 + … + (B m1 x + C m1) / (x 2 +p 1 x + q 1) + …+

+ (ม. 1 x + N 1) / (x 2 +p เสื้อ x + q เสื้อ) m1 + … + (ม. ม.1 x + N ม.1) / (x 2 +พี เสื้อ x + q เสื้อ)

แน่นอนว่ากราฟของฟังก์ชันเศษส่วนเชิงตรรกศาสตร์สามารถหาได้จากผลรวมของกราฟของเศษส่วนเบื้องต้น

การพล็อตกราฟของฟังก์ชันตรรกยะเศษส่วน

ลองพิจารณาหลายวิธีในการสร้างกราฟของฟังก์ชันตรรกยะเศษส่วน

ตัวอย่างที่ 4

สร้างกราฟฟังก์ชัน y = 1/x 2

สารละลาย.

เราใช้กราฟของฟังก์ชัน y = x 2 เพื่อสร้างกราฟที่มี y = 1/x 2 และใช้เทคนิค "หาร" กราฟ

โดเมน D(y) = (-∞; 0)ᴗ(0; +∞)

ช่วงของค่า E(y) = (0; +∞)

ไม่มีจุดตัดกับแกน ฟังก์ชันเป็นคู่ เพิ่มขึ้นสำหรับ x ทั้งหมดจากช่วงเวลา (-∞; 0) ลดลงสำหรับ x จาก 0 ถึง +∞

คำตอบ: รูปที่ 2

ตัวอย่างที่ 5

สร้างกราฟฟังก์ชัน y = (x 2 – 4x + 3) / (9 – 3x)

สารละลาย.

โดเมน D(y) = (-∞; 3)ᴗ(3; +∞)

y = (x 2 – 4x + 3) / (9 – 3x) = (x – 3)(x – 1) / (-3(x – 3)) = -(x – 1)/3 = -x/ 3 + 1/3.

ในที่นี้เราใช้เทคนิคการแยกตัวประกอบ การลดลง และการลดลงเป็นฟังก์ชันเชิงเส้น

คำตอบ: รูปที่ 3

ตัวอย่างที่ 6

สร้างกราฟฟังก์ชัน y = (x 2 – 1)/(x 2 + 1)

สารละลาย.

ขอบเขตของคำจำกัดความคือ D(y) = R เนื่องจากฟังก์ชันเป็นเลขคู่ กราฟจึงมีความสมมาตรเกี่ยวกับพิกัด ก่อนที่จะสร้างกราฟ มาแปลงนิพจน์อีกครั้งโดยเน้นส่วนทั้งหมด:

y = (x 2 – 1)/(x 2 + 1) = 1 – 2/(x 2 + 1)

โปรดทราบว่าการแยกส่วนจำนวนเต็มออกจากสูตรของฟังก์ชันเศษส่วนเป็นเหตุผลหลักในการสร้างกราฟ

ถ้า x → ±∞ ดังนั้น y → 1 เช่น เส้นตรง y = 1 เป็นเส้นกำกับแนวนอน

คำตอบ: รูปที่ 4

ตัวอย่างที่ 7

ลองพิจารณาฟังก์ชัน y = x/(x 2 + 1) แล้วลองค้นหาค่าที่ใหญ่ที่สุดอย่างแม่นยำ เช่น จุดสูงสุดบนครึ่งขวาของกราฟ การสร้างกราฟนี้อย่างถูกต้องแม่นยำ ความรู้ในปัจจุบันยังไม่เพียงพอ แน่นอนว่าเส้นโค้งของเราไม่สามารถ "ขึ้น" สูงมากได้เพราะว่า ตัวส่วนเริ่ม "แซง" ตัวเศษอย่างรวดเร็ว ลองดูว่าค่าของฟังก์ชันจะเท่ากับ 1 ได้หรือไม่ เมื่อต้องการทำสิ่งนี้ เราต้องแก้สมการ x 2 + 1 = x, x 2 – x + 1 = 0 สมการนี้ไม่มีรากจริง ซึ่งหมายความว่าสมมติฐานของเราไม่ถูกต้อง ในการหาค่าที่ใหญ่ที่สุดของฟังก์ชัน คุณต้องหาว่าสมการ A = x/(x 2 + 1) มีค่าเท่าใดในสมการ A = x/(x 2 + 1) ลองแทนที่สมการเดิมด้วยสมการกำลังสอง: Ax 2 – x + A = 0 สมการนี้มีคำตอบเมื่อ 1 – 4A 2 ≥ 0 จากตรงนี้ เราจะพบค่าที่ใหญ่ที่สุด A = 1/2

คำตอบ: รูปที่ 5, สูงสุด y(x) = ½

ยังมีคำถามอยู่ใช่ไหม? ไม่รู้วิธีสร้างกราฟฟังก์ชันใช่ไหม?
หากต้องการความช่วยเหลือจากครูสอนพิเศษ ให้ลงทะเบียน
บทเรียนแรกฟรี!

เว็บไซต์ เมื่อคัดลอกเนื้อหาทั้งหมดหรือบางส่วน จำเป็นต้องมีลิงก์ไปยังแหล่งที่มา

ความยาวของส่วนบนแกนพิกัดถูกกำหนดโดยสูตร:

พบความยาวของส่วนบนระนาบพิกัดโดยใช้สูตร:

หากต้องการค้นหาความยาวของส่วนในระบบพิกัดสามมิติ ให้ใช้สูตรต่อไปนี้:

พิกัดของจุดกึ่งกลางของส่วน (สำหรับแกนพิกัดจะใช้เฉพาะสูตรแรกเท่านั้นสำหรับระนาบพิกัด - สองสูตรแรกสำหรับระบบพิกัดสามมิติ - ทั้งสามสูตร) ​​คำนวณโดยใช้สูตร:

การทำงาน– นี่คือการโต้ตอบของแบบฟอร์ม = (x) ระหว่างปริมาณแปรผัน เนื่องจากแต่ละค่าพิจารณาค่าของปริมาณแปรผันบางค่า x(อาร์กิวเมนต์หรือตัวแปรอิสระ) สอดคล้องกับค่าหนึ่งของตัวแปรอื่น (ตัวแปรตาม บางครั้งค่านี้เรียกง่ายๆ ว่าค่าของฟังก์ชัน) โปรดทราบว่าฟังก์ชันจะถือว่ามีค่าอาร์กิวเมนต์หนึ่งค่า เอ็กซ์ตัวแปรตามสามารถสอดคล้องได้เพียงค่าเดียวเท่านั้น ที่- แต่มีค่าเท่ากัน ที่สามารถรับได้ต่างกัน เอ็กซ์.

โดเมนฟังก์ชัน– นี่คือค่าทั้งหมดของตัวแปรอิสระ (อาร์กิวเมนต์ของฟังก์ชัน โดยปกติจะเป็นเช่นนี้ เอ็กซ์) ซึ่งมีการกำหนดฟังก์ชันไว้ เช่น ความหมายของมันมีอยู่จริง มีการระบุพื้นที่คำจำกัดความ ดี(- โดยทั่วไปแล้ว คุณคุ้นเคยกับแนวคิดนี้อยู่แล้ว โดเมนของคำจำกัดความของฟังก์ชันเรียกอีกอย่างว่าโดเมนของค่าที่อนุญาตหรือ VA ซึ่งคุณสามารถหาได้มานานแล้ว

ช่วงฟังก์ชันคือค่าที่เป็นไปได้ทั้งหมดของตัวแปรตามของฟังก์ชันที่กำหนด กำหนด อี(ที่).

ฟังก์ชั่นเพิ่มขึ้นในช่วงเวลาที่ค่าอาร์กิวเมนต์ที่มากขึ้นสอดคล้องกับค่าที่มากขึ้นของฟังก์ชัน ฟังก์ชันกำลังลดลงในช่วงเวลาที่ค่าอาร์กิวเมนต์ที่มากกว่าสอดคล้องกับค่าที่น้อยกว่าของฟังก์ชัน

ช่วงของสัญญาณคงที่ของฟังก์ชัน- นี่คือช่วงเวลาของตัวแปรอิสระที่ตัวแปรตามคงเครื่องหมายบวกหรือลบไว้

ฟังก์ชันศูนย์– นี่คือค่าของอาร์กิวเมนต์ที่มีค่าของฟังก์ชันเท่ากับศูนย์ ที่จุดเหล่านี้ กราฟฟังก์ชันจะตัดแกนแอบซิสซา (แกน OX) บ่อยครั้ง ความจำเป็นในการค้นหาศูนย์ของฟังก์ชันหมายถึงความจำเป็นในการแก้สมการ นอกจากนี้ บ่อยครั้งความจำเป็นในการหาช่วงความคงที่ของเครื่องหมายหมายถึงความจำเป็นในการแก้ปัญหาความไม่เท่าเทียมกัน

การทำงาน = (x) ถูกเรียก สม่ำเสมอ เอ็กซ์

ซึ่งหมายความว่าสำหรับค่าตรงข้ามของอาร์กิวเมนต์ ค่าของฟังก์ชันคู่จะเท่ากัน กราฟของฟังก์ชันคู่จะสมมาตรเสมอเมื่อเทียบกับแกนพิกัดของออปแอมป์

การทำงาน = (x) ถูกเรียก แปลกหากถูกกำหนดไว้บนเซตสมมาตรและสำหรับใดๆ เอ็กซ์จากขอบเขตของคำจำกัดความความเท่าเทียมกันจะคงอยู่:

ซึ่งหมายความว่าสำหรับค่าตรงข้ามของอาร์กิวเมนต์ ค่าของฟังก์ชันคี่ก็จะตรงกันข้ามเช่นกัน กราฟของฟังก์ชันคี่มีความสมมาตรเกี่ยวกับจุดกำเนิดเสมอ

ผลรวมของรากของฟังก์ชันคู่และคี่ (จุดตัดของแกน x OX) จะเท่ากับศูนย์เสมอ เพราะ สำหรับทุก ๆ รากที่เป็นบวก เอ็กซ์มีรากเป็นลบ - เอ็กซ์.

สิ่งสำคัญที่ควรทราบ: บางฟังก์ชันไม่จำเป็นต้องเป็นเลขคู่หรือคี่ มีฟังก์ชันมากมายที่ไม่เป็นคู่หรือคี่ ฟังก์ชันดังกล่าวเรียกว่า ฟังก์ชั่นทั่วไปและสำหรับพวกเขาแล้ว ไม่มีความเท่าเทียมกันหรือคุณสมบัติใดๆ ที่ให้ไว้ข้างต้นเป็นที่พอใจ

ฟังก์ชันเชิงเส้นเป็นฟังก์ชันที่สามารถกำหนดได้จากสูตร:

กราฟของฟังก์ชันเชิงเส้นจะเป็นเส้นตรง และในกรณีทั่วไปจะมีลักษณะดังนี้ (มีตัวอย่างสำหรับกรณีเมื่อ เค> 0 ในกรณีนี้ฟังก์ชันจะเพิ่มขึ้น สำหรับโอกาสนี้ เค < 0 функция будет убывающей, т.е. прямая будет наклонена в другую сторону - слева направо):

กราฟของฟังก์ชันกำลังสอง (พาราโบลา)

กราฟของพาราโบลาถูกกำหนดโดยฟังก์ชันกำลังสอง:

ฟังก์ชันกำลังสองก็เหมือนกับฟังก์ชันอื่นๆ ที่ตัดแกน OX ที่จุดที่เป็นจุดราก: ( x 1 ; 0) และ ( x 2 ; 0) หากไม่มีราก ฟังก์ชันกำลังสองจะไม่ตัดกับแกน OX หากมีเพียงรากเดียว ณ จุดนี้ ( x 0 ; 0) ฟังก์ชันกำลังสองสัมผัสเฉพาะแกน OX แต่ไม่ได้ตัดกัน ฟังก์ชันกำลังสองจะตัดแกน OY ที่จุดที่มีพิกัดเสมอ: (0; - กราฟของฟังก์ชันกำลังสอง (พาราโบลา) อาจมีลักษณะเช่นนี้ (รูปแสดงตัวอย่างที่ไม่รวมพาราโบลาที่เป็นไปได้ทุกประเภท):

โดยที่:

  • ถ้าเป็นค่าสัมประสิทธิ์ > 0 อยู่ในฟังก์ชัน = ขวาน 2 + บีเอ็กซ์ + จากนั้นกิ่งก้านของพาราโบลาจะชี้ขึ้น
  • ถ้า < 0, то ветви параболы направлены вниз.

พิกัดของจุดยอดของพาราโบลาสามารถคำนวณได้โดยใช้สูตรต่อไปนี้ เอ็กซ์ ท็อป (พี- ในภาพด้านบน) พาราโบลา (หรือจุดที่ตรีโกณมิติกำลังสองถึงค่าที่ใหญ่ที่สุดหรือน้อยที่สุด):

ท็อปส์ซูอิเกรก (ถาม- ในรูปด้านบน) พาราโบลาหรือค่าสูงสุดหากกิ่งก้านของพาราโบลาชี้ลง ( < 0), либо минимальное, если ветви параболы направлены вверх (> 0) ค่าของตรีโกณมิติกำลังสอง:

กราฟของฟังก์ชันอื่นๆ

ฟังก์ชั่นพลังงาน

นี่คือตัวอย่างกราฟของฟังก์ชันกำลัง:

สัดส่วนผกผันเป็นฟังก์ชันที่กำหนดโดยสูตร:

ขึ้นอยู่กับเครื่องหมายของหมายเลข เคกราฟการพึ่งพาตามสัดส่วนผกผันอาจมีสองตัวเลือกพื้นฐาน:

เส้นกำกับเป็นเส้นตรงที่กราฟของฟังก์ชันเข้าใกล้อนันต์แต่ไม่ได้ตัดกัน เส้นกำกับสำหรับกราฟสัดส่วนผกผันที่แสดงในรูปด้านบนคือแกนพิกัดที่กราฟของฟังก์ชันเข้าใกล้อย่างไม่สิ้นสุด แต่ไม่ได้ตัดกัน

ฟังก์ชันเลขชี้กำลังมีฐาน เป็นฟังก์ชันที่กำหนดโดยสูตร:

กราฟของฟังก์ชันเอ็กซ์โพเนนเชียลสามารถมีได้ 2 ตัวเลือกพื้นฐาน (เรายังยกตัวอย่างให้ดูด้านล่างด้วย):

ฟังก์ชันลอการิทึมเป็นฟังก์ชันที่กำหนดโดยสูตร:

ขึ้นอยู่กับว่าจำนวนนั้นมากกว่าหรือน้อยกว่าหนึ่ง กราฟของฟังก์ชันลอการิทึมสามารถมีได้สองตัวเลือกพื้นฐาน:

กราฟของฟังก์ชัน = |x| ดังต่อไปนี้:

กราฟของฟังก์ชันคาบ (ตรีโกณมิติ)

การทำงาน ที่ = (x) ถูกเรียก เป็นระยะๆถ้ามีเลขไม่เป็นศูนย์เช่นนั้น , อะไร (x + ) = (x) สำหรับใครก็ตาม เอ็กซ์จากโดเมนของฟังก์ชัน (x- ถ้าฟังก์ชั่น (x) เป็นคาบกับคาบ จากนั้นฟังก์ชัน:

ที่ไหน: , เค, เป็นตัวเลขคงที่ และ เคไม่เท่ากับศูนย์ และมีคาบเป็นงวดด้วย 1 ซึ่งถูกกำหนดโดยสูตร:

ตัวอย่างของฟังก์ชันคาบส่วนใหญ่เป็นฟังก์ชันตรีโกณมิติ เรานำเสนอกราฟของฟังก์ชันตรีโกณมิติหลัก รูปต่อไปนี้แสดงส่วนหนึ่งของกราฟของฟังก์ชัน = บาป x(กราฟทั้งหมดดำเนินต่อไปทางซ้ายและขวาอย่างไม่มีกำหนด) กราฟของฟังก์ชัน = บาป xเรียกว่า ไซนัสอยด์:

กราฟของฟังก์ชัน =คอส xเรียกว่า โคไซน์- กราฟนี้แสดงในรูปต่อไปนี้ เนื่องจากกราฟไซน์ดำเนินต่อไปเรื่อยๆ ตามแนวแกน OX ไปทางซ้ายและขวา:

กราฟของฟังก์ชัน = ทีจี xเรียกว่า แทนเจนตอยด์- กราฟนี้แสดงในรูปต่อไปนี้ เช่นเดียวกับกราฟของฟังก์ชันคาบอื่นๆ กราฟนี้จะวนซ้ำไปเรื่อยๆ ตามแกน OX ไปทางซ้ายและขวา

และสุดท้ายคือกราฟของฟังก์ชัน =กะทิ xเรียกว่า โคแทนเจนตอยด์- กราฟนี้แสดงในรูปต่อไปนี้ เช่นเดียวกับกราฟของฟังก์ชันคาบและตรีโกณมิติอื่นๆ กราฟนี้จะวนซ้ำไปเรื่อยๆ ตามแกน OX ไปทางซ้ายและขวา

  • เรียนรู้สูตรและกฎทั้งหมดในฟิสิกส์ และสูตรและวิธีการในวิชาคณิตศาสตร์ อันที่จริง วิธีนี้ทำได้ง่ายมากเช่นกัน มีสูตรฟิสิกส์ที่จำเป็นเพียงประมาณ 200 สูตร และน้อยกว่านั้นอีกเล็กน้อยในวิชาคณิตศาสตร์ ในแต่ละวิชาเหล่านี้มีวิธีมาตรฐานประมาณสิบวิธีในการแก้ปัญหาระดับความซับซ้อนขั้นพื้นฐานซึ่งสามารถเรียนรู้ได้และด้วยเหตุนี้จึงดำเนินการโดยอัตโนมัติอย่างสมบูรณ์และไม่มีปัญหาในการแก้ปัญหา CT ส่วนใหญ่ในเวลาที่เหมาะสม หลังจากนี้คุณจะต้องคิดถึงเฉพาะงานที่ยากที่สุดเท่านั้น
  • เข้าร่วมการทดสอบซ้อมทั้งสามขั้นตอนในวิชาฟิสิกส์และคณิตศาสตร์ สามารถเยี่ยมชม RT แต่ละรายการได้สองครั้งเพื่อตัดสินใจเลือกทั้งสองตัวเลือก อีกครั้งใน CT นอกเหนือจากความสามารถในการแก้ปัญหาได้อย่างรวดเร็วและมีประสิทธิภาพและความรู้เกี่ยวกับสูตรและวิธีการแล้วคุณยังต้องสามารถวางแผนเวลากระจายกำลังได้อย่างเหมาะสมและที่สำคัญที่สุดคือกรอกแบบฟอร์มคำตอบให้ถูกต้องโดยไม่ต้อง สับสนกับจำนวนคำตอบและปัญหาหรือนามสกุลของคุณเอง นอกจากนี้ ในช่วง RT สิ่งสำคัญคือต้องทำความคุ้นเคยกับรูปแบบการถามคำถามในปัญหา ซึ่งอาจดูเหมือนผิดปกติมากสำหรับผู้ที่ไม่ได้เตรียมตัวที่ DT
  • การดำเนินการตามสามประเด็นนี้อย่างประสบความสำเร็จ ขยัน และมีความรับผิดชอบจะช่วยให้คุณสามารถแสดงผลลัพธ์ที่ยอดเยี่ยมที่ CT ได้มากเท่ากับความสามารถของคุณ

    พบข้อผิดพลาด?

    หากคุณคิดว่าคุณพบข้อผิดพลาดในเอกสารการฝึกอบรม โปรดเขียนแจ้งทางอีเมล คุณยังสามารถรายงานข้อผิดพลาดบนโซเชียลเน็ตเวิร์ก () ในจดหมาย ให้ระบุหัวเรื่อง (ฟิสิกส์หรือคณิตศาสตร์) ชื่อหรือหมายเลขหัวข้อหรือแบบทดสอบ จำนวนปัญหา หรือสถานที่ในข้อความ (หน้า) ซึ่งในความเห็นของคุณมีข้อผิดพลาด อธิบายด้วยว่าข้อผิดพลาดที่น่าสงสัยคืออะไร จดหมายของคุณจะไม่มีใครสังเกตเห็น ข้อผิดพลาดจะได้รับการแก้ไข หรือคุณจะได้รับการอธิบายว่าทำไมจึงไม่ใช่ข้อผิดพลาด

    กราฟฟังก์ชันคือการแสดงพฤติกรรมของฟังก์ชันบนระนาบพิกัดด้วยภาพ กราฟช่วยให้คุณเข้าใจแง่มุมต่างๆ ของฟังก์ชันที่ไม่สามารถระบุได้จากตัวฟังก์ชันเอง คุณสามารถสร้างกราฟของฟังก์ชันต่างๆ ได้มากมาย และแต่ละฟังก์ชันจะได้รับสูตรเฉพาะ กราฟของฟังก์ชันใดๆ ถูกสร้างขึ้นโดยใช้อัลกอริธึมเฉพาะ (หากคุณลืมขั้นตอนที่แน่นอนในการสร้างกราฟฟังก์ชันเฉพาะ)

    ขั้นตอน

    การสร้างกราฟฟังก์ชันเชิงเส้น

      ตรวจสอบว่าฟังก์ชันเป็นแบบเชิงเส้นหรือไม่ฟังก์ชันเชิงเส้นได้มาจากสูตรของแบบฟอร์ม F (x) = k x + b (\รูปแบบการแสดงผล F(x)=kx+b)หรือ y = kx + b (\displaystyle y=kx+b)(เช่น ) และกราฟเป็นเส้นตรง ดังนั้น สูตรจึงประกอบด้วยตัวแปรหนึ่งตัวและค่าคงที่หนึ่งตัว (ค่าคงที่) โดยไม่มีเลขยกกำลัง เครื่องหมายราก หรือสิ่งที่คล้ายกัน ด้วยฟังก์ชันประเภทเดียวกัน การพล็อตกราฟของฟังก์ชันดังกล่าวจึงค่อนข้างง่าย นี่คือตัวอย่างอื่นๆ ของฟังก์ชันเชิงเส้น:

      ใช้ค่าคงที่เพื่อทำเครื่องหมายจุดบนแกน Yค่าคงที่ (b) คือพิกัด “y” ของจุดที่กราฟตัดกับแกน Y นั่นคือเป็นจุดที่พิกัด “x” เท่ากับ 0 ดังนั้น หาก x = 0 ถูกแทนที่ด้วยสูตร แล้ว y = b (ค่าคงที่) ในตัวอย่างของเรา y = 2 x + 5 (\displaystyle y=2x+5)ค่าคงที่เท่ากับ 5 นั่นคือจุดตัดกับแกน Y มีพิกัด (0.5) พล็อตจุดนี้บนระนาบพิกัด

      หาความชันของเส้นตรง.มันเท่ากับตัวคูณของตัวแปร ในตัวอย่างของเรา y = 2 x + 5 (\displaystyle y=2x+5)ด้วยตัวแปร “x” จะมีตัวประกอบเป็น 2; ดังนั้น ค่าสัมประสิทธิ์ความชันจะเท่ากับ 2 ค่าสัมประสิทธิ์ความชันจะกำหนดมุมเอียงของเส้นตรงไปยังแกน X กล่าวคือ ยิ่งค่าสัมประสิทธิ์ความชันยิ่งมาก ฟังก์ชันก็จะยิ่งเพิ่มหรือลดลงเร็วขึ้นเท่านั้น

      เขียนความชันเป็นเศษส่วน.ค่าสัมประสิทธิ์เชิงมุมเท่ากับค่าแทนเจนต์ของมุมเอียง นั่นคืออัตราส่วนของระยะทางแนวตั้ง (ระหว่างจุดสองจุดบนเส้นตรง) กับระยะทางแนวนอน (ระหว่างจุดเดียวกัน) ในตัวอย่างของเรา ความชันคือ 2 ดังนั้นเราจึงระบุได้ว่าระยะในแนวตั้งคือ 2 และระยะแนวนอนคือ 1 เขียนนี่เป็นเศษส่วน: 2 1 (\displaystyle (\frac (2)(1))).

      • หากความชันเป็นลบ ฟังก์ชันจะลดลง
    1. จากจุดที่เส้นตรงตัดแกน Y ให้วาดจุดที่สองโดยใช้ระยะห่างในแนวตั้งและแนวนอน ฟังก์ชันเชิงเส้นสามารถเขียนกราฟได้โดยใช้จุดสองจุด ในตัวอย่างของเรา จุดตัดกับแกน Y มีพิกัด (0.5) จากจุดนี้ ให้เลื่อนขึ้นไป 2 ช่องแล้วไปทางขวา 1 ช่อง ทำเครื่องหมายจุด; ก็จะมีพิกัด (1,7) ตอนนี้คุณสามารถวาดเส้นตรงได้แล้ว

      ใช้ไม้บรรทัดลากเส้นตรงผ่านจุดสองจุดเพื่อหลีกเลี่ยงข้อผิดพลาด ให้ค้นหาจุดที่สาม แต่โดยส่วนใหญ่แล้วกราฟสามารถพล็อตได้โดยใช้จุดสองจุด ดังนั้น คุณได้พลอตฟังก์ชันเชิงเส้นแล้ว

    การพล็อตจุดบนระนาบพิกัด

      กำหนดฟังก์ชันฟังก์ชันนี้แสดงเป็น f(x) ค่าที่เป็นไปได้ทั้งหมดของตัวแปร "y" เรียกว่าโดเมนของฟังก์ชัน และค่าที่เป็นไปได้ทั้งหมดของตัวแปร "x" เรียกว่าโดเมนของฟังก์ชัน ตัวอย่างเช่น ลองพิจารณาฟังก์ชัน y = x+2 ซึ่งก็คือ f(x) = x+2

      วาดเส้นตั้งฉากตัดกันสองเส้นเส้นแนวนอนคือแกน X เส้นแนวตั้งคือแกน Y

      ติดป้ายกำกับแกนพิกัดแบ่งแต่ละแกนออกเป็นส่วนเท่าๆ กัน แล้วกำหนดหมายเลข จุดตัดของแกนคือ 0 สำหรับแกน X: ตัวเลขบวกจะถูกพล็อตไปทางขวา (จาก 0) และตัวเลขลบไปทางซ้าย สำหรับแกน Y: ตัวเลขบวกจะถูกพล็อตไว้ด้านบน (ตั้งแต่ 0) และตัวเลขลบจะอยู่ด้านล่าง

      ค้นหาค่าของ "y" จากค่าของ "x"ในตัวอย่างของเรา f(x) = x+2 แทนค่า x เฉพาะลงในสูตรนี้เพื่อคำนวณค่า y ที่สอดคล้องกัน หากได้รับฟังก์ชันที่ซับซ้อน ให้ลดความซับซ้อนโดยการแยกตัว “y” ออกจากด้านหนึ่งของสมการ

      • -1: -1 + 2 = 1
      • 0: 0 +2 = 2
      • 1: 1 + 2 = 3
    1. พล็อตจุดบนระนาบพิกัดสำหรับพิกัดแต่ละคู่ ให้ทำดังนี้: ค้นหาค่าที่สอดคล้องกันบนแกน X และวาดเส้นแนวตั้ง (เส้นประ) ค้นหาค่าที่สอดคล้องกันบนแกน Y แล้ววาดเส้นแนวนอน (เส้นประ) ทำเครื่องหมายจุดตัดของเส้นประสองเส้น ดังนั้นคุณได้พล็อตจุดบนกราฟแล้ว

      ลบเส้นประทำสิ่งนี้หลังจากพล็อตจุดทั้งหมดบนกราฟบนระนาบพิกัดแล้ว หมายเหตุ: กราฟของฟังก์ชัน f(x) = x เป็นเส้นตรงที่ผ่านจุดศูนย์กลางพิกัด [จุดที่มีพิกัด (0,0)] กราฟ f(x) = x + 2 เป็นเส้นขนานกับเส้น f(x) = x แต่เลื่อนขึ้นสองหน่วยจึงผ่านจุดที่มีพิกัด (0,2) (เพราะค่าคงที่คือ 2) .

    การสร้างกราฟฟังก์ชันที่ซับซ้อน

      ค้นหาศูนย์ของฟังก์ชันค่าศูนย์ของฟังก์ชันคือค่าของตัวแปร x โดยที่ y = 0 นั่นคือจุดที่กราฟตัดกับแกน X โปรดจำไว้ว่าไม่ใช่ทุกฟังก์ชันจะมีศูนย์ แต่เป็นฟังก์ชันแรก ขั้นตอนในกระบวนการสร้างกราฟฟังก์ชันใดๆ หากต้องการค้นหาค่าศูนย์ของฟังก์ชัน ให้จัดให้เป็นศูนย์ ตัวอย่างเช่น:

      ค้นหาและทำเครื่องหมายเส้นกำกับแนวนอนเส้นกำกับคือเส้นตรงที่กราฟของฟังก์ชันเข้าใกล้แต่ไม่เคยตัดกัน (นั่นคือ ในภูมิภาคนี้ ฟังก์ชันไม่ได้ถูกกำหนดไว้ เช่น เมื่อหารด้วย 0) ทำเครื่องหมายเส้นกำกับด้วยเส้นประ หากตัวแปร "x" อยู่ในตัวส่วนของเศษส่วน (เช่น y = 1 4 − x 2 (\displaystyle y=(\frac (1)(4-x^(2))))) ตั้งค่าตัวส่วนเป็นศูนย์แล้วหา "x" ในค่าที่ได้รับของตัวแปร “x” ฟังก์ชันไม่ได้ถูกกำหนดไว้ (ในตัวอย่างของเรา ให้วาดเส้นประผ่าน x = 2 และ x = -2) เนื่องจากคุณไม่สามารถหารด้วย 0 ได้ แต่เส้นกำกับไม่ได้มีเฉพาะในกรณีที่ฟังก์ชันมีนิพจน์เศษส่วนเท่านั้น ดังนั้นจึงแนะนำให้ใช้สามัญสำนึก:

    1. ค้นหาพิกัดของจุดต่างๆ แล้วลงจุดบนระนาบพิกัดเพียงเลือกค่า x หลายค่าแล้วเสียบเข้ากับฟังก์ชันเพื่อค้นหาค่า y ที่สอดคล้องกัน จากนั้นพล็อตจุดบนระนาบพิกัด ยิ่งฟังก์ชันซับซ้อนมากเท่าไร คุณก็ยิ่งต้องค้นหาและพล็อตจุดมากขึ้นเท่านั้น ในกรณีส่วนใหญ่ ให้แทน x = -1; x = 0; x = 1 แต่ถ้าฟังก์ชันนั้นซับซ้อน ให้หาจุดสามจุดในแต่ละด้านของจุดกำเนิด

      • ในกรณีที่มีฟังก์ชั่น y = 5 x 2 + 6 (\displaystyle y=5x^(2)+6)เสียบค่า x ต่อไปนี้: -1, 0, 1, -2, 2, -10, 10 คุณจะได้รับคะแนนเพียงพอ
      • เลือกค่า x ของคุณอย่างชาญฉลาด ในตัวอย่างของเรา มันง่ายที่จะเข้าใจว่าเครื่องหมายลบไม่สำคัญ: ค่าของ "y" ที่ x = 10 และที่ x = -10 จะเท่ากัน
    2. หากคุณไม่รู้ว่าต้องทำอย่างไร ให้เริ่มด้วยการแทนค่า x ต่างๆ ลงในฟังก์ชันเพื่อค้นหาค่า y (และด้วยเหตุนี้จึงเป็นพิกัดของจุด) ตามทฤษฎีแล้ว กราฟของฟังก์ชันสามารถสร้างขึ้นได้โดยใช้วิธีนี้เท่านั้น (แน่นอนว่า หากใช้แทนค่า "x" ที่หลากหลายไม่จำกัด)

    มหาวิทยาลัยวิจัยแห่งชาติ

    ภาควิชาธรณีวิทยาประยุกต์

    บทคัดย่อเกี่ยวกับคณิตศาสตร์ชั้นสูง

    ในหัวข้อ: “ฟังก์ชันพื้นฐานเบื้องต้น

    คุณสมบัติและกราฟของพวกเขา"

    สมบูรณ์:

    ตรวจสอบแล้ว:

    ครู

    คำนิยาม. ฟังก์ชันที่กำหนดโดยสูตร y=a x (โดยที่ a>0, a≠1) เรียกว่าฟังก์ชันเลขชี้กำลังที่มีฐาน a

    ให้เรากำหนดคุณสมบัติหลักของฟังก์ชันเลขชี้กำลัง:

    1. โดเมนของคำจำกัดความคือเซต (R) ของจำนวนจริงทั้งหมด

    2. พิสัย - เซต (R+) ของจำนวนจริงบวกทั้งหมด

    3. สำหรับ a > 1 ฟังก์ชันจะเพิ่มขึ้นตามเส้นจำนวนทั้งหมด เวลา 0<а<1 функция убывает.

    4. เป็นฟังก์ชันรูปแบบทั่วไป

    , ในช่วงเวลา xО [-3;3]
    , ในช่วงเวลา xО [-3;3]

    ฟังก์ชันที่อยู่ในรูปแบบ y(x)=x n โดยที่ n คือตัวเลข ОR เรียกว่าฟังก์ชันยกกำลัง จำนวน n สามารถใช้กับค่าที่แตกต่างกันได้ ทั้งจำนวนเต็มและเศษส่วน ทั้งเลขคู่และคี่ ฟังก์ชันกำลังจะมีรูปแบบที่แตกต่างกันขึ้นอยู่กับสิ่งนี้ ลองพิจารณากรณีพิเศษที่เป็นฟังก์ชันกำลังและสะท้อนถึงคุณสมบัติพื้นฐานของเส้นโค้งประเภทนี้ตามลำดับต่อไปนี้: ฟังก์ชันกำลัง y=x² (ฟังก์ชันที่มีเลขชี้กำลังเลขคู่ - พาราโบลา) ฟังก์ชันกำลัง y=x³ (ฟังก์ชันที่มีเลขชี้กำลังคี่ - ลูกบาศก์พาราโบลา) และฟังก์ชัน y=√x (x ยกกำลัง ½) (ฟังก์ชันที่มีเลขชี้กำลังเศษส่วน) ฟังก์ชันที่มีเลขชี้กำลังจำนวนเต็มลบ (ไฮเปอร์โบลา)

    ฟังก์ชั่นพลังงาน ย=x²

    1. D(x)=R – ฟังก์ชันถูกกำหนดบนแกนตัวเลขทั้งหมด

    2. E(y)= และเพิ่มขึ้นตามช่วงเวลา

    ฟังก์ชั่นพลังงาน y=x³

    1. กราฟของฟังก์ชัน y=x³ เรียกว่าลูกบาศก์พาราโบลา ฟังก์ชันกำลัง y=x³ มีคุณสมบัติดังต่อไปนี้:

    2. D(x)=R – ฟังก์ชันถูกกำหนดบนแกนตัวเลขทั้งหมด

    3. E(y)=(-∞;∞) – ฟังก์ชันรับค่าทั้งหมดในโดเมนของคำจำกัดความ

    4. เมื่อ x=0 y=0 – ฟังก์ชันจะผ่านจุดกำเนิดของพิกัด O(0;0)

    5. ฟังก์ชันจะเพิ่มขึ้นทั่วทั้งขอบเขตคำจำกัดความ

    6. ฟังก์ชันเป็นเลขคี่ (สมมาตรเกี่ยวกับจุดกำเนิด)


    , ในช่วงเวลา xО [-3;3]

    ขึ้นอยู่กับปัจจัยตัวเลขที่อยู่ด้านหน้า x³ ฟังก์ชันสามารถชัน/คงที่ และเพิ่ม/ลดได้

    ฟังก์ชันยกกำลังที่มีเลขชี้กำลังจำนวนเต็มลบ:

    ถ้าเลขชี้กำลัง n เป็นเลขคี่ กราฟของฟังก์ชันยกกำลังจะเรียกว่าไฮเปอร์โบลา ฟังก์ชันยกกำลังที่มีเลขชี้กำลังลบจำนวนเต็มมีคุณสมบัติดังต่อไปนี้:

    1. D(x)=(-∞;0)U(0;∞) สำหรับ n ใดๆ;

    2. E(y)=(-∞;0)U(0;∞) ถ้า n เป็นเลขคี่ E(y)=(0;∞) ถ้า n เป็นเลขคู่

    3. ฟังก์ชันจะลดลงทั่วทั้งโดเมนของคำจำกัดความ ถ้า n เป็นเลขคี่ ฟังก์ชันจะเพิ่มขึ้นในช่วงเวลา (-∞;0) และลดลงในช่วงเวลา (0;∞) ถ้า n เป็นเลขคู่

    4. ฟังก์ชันจะเป็นเลขคี่ (สมมาตรเกี่ยวกับจุดกำเนิด) ถ้า n เป็นเลขคี่ ฟังก์ชันจะเป็นแม้ว่า n จะเป็นเลขคู่ก็ตาม

    5. ฟังก์ชันจะส่งผ่านจุด (1;1) และ (-1;-1) ถ้า n เป็นเลขคี่ และผ่านจุด (1;1) และ (-1;1) ถ้า n เป็นเลขคู่


    , ในช่วงเวลา xО [-3;3]

    ฟังก์ชันยกกำลังพร้อมเลขชี้กำลังเศษส่วน

    ฟังก์ชันยกกำลังที่มีเลขชี้กำลังเศษส่วน (รูปภาพ) มีกราฟของฟังก์ชันดังแสดงในรูป ฟังก์ชันยกกำลังที่มีเลขชี้กำลังเศษส่วนมีคุณสมบัติดังต่อไปนี้: (รูปภาพ)

    1. D(x) ОR ถ้า n เป็นเลขคี่ และ D(x)=
    ในช่วงเวลา xO
    , ในช่วงเวลา xО [-3;3]

    ฟังก์ชันลอการิทึม y = log a x มีคุณสมบัติดังต่อไปนี้:

    1. โดเมนของคำจำกัดความ D(x)О (0; + ∞)

    2. ช่วงค่า E(y) О (- ∞; + ∞)

    3. ฟังก์ชันไม่เป็นคู่หรือคี่ (ในรูปแบบทั่วไป)

    4. ฟังก์ชั่นเพิ่มขึ้นในช่วงเวลา (0; + ∞) สำหรับ a > 1 ลดลง (0; + ∞) สำหรับ 0< а < 1.

    กราฟของฟังก์ชัน y = log a x สามารถหาได้จากกราฟของฟังก์ชัน y = a x โดยใช้การแปลงสมมาตรรอบเส้นตรง y = x รูปที่ 9 แสดงกราฟของฟังก์ชันลอการิทึมสำหรับ a > 1 และรูปที่ 10 สำหรับ 0< a < 1.


    - ในช่วงเวลาxО
    - ในช่วงเวลาxО

    ฟังก์ชัน y = sin x, y = cos x, y = tan x, y = ctg x เรียกว่าฟังก์ชันตรีโกณมิติ

    ฟังก์ชัน y = sin x, y = tan x, y = ctg x เป็นเลขคี่ และฟังก์ชัน y = cos x เป็นเลขคู่

    ฟังก์ชัน y = บาป(x)

    1. โดเมนของคำจำกัดความ D(x) ОR

    2. ช่วงของค่า E(y) О [ - 1; 1].

    3. ฟังก์ชั่นเป็นระยะ คาบหลักคือ 2π

    4. ฟังก์ชันเป็นเลขคี่

    5. ฟังก์ชันจะเพิ่มขึ้นตามช่วงเวลา [ -π/2 + 2πn; π/2 + 2πn] และลดลงตามช่วง [π/2 + 2πn; 3π/2 + 2πn], n О Z

    กราฟของฟังก์ชัน y = sin (x) แสดงในรูปที่ 11