Известно, что геномы человека и шимпанзе совпадают на 99%, однако наши нервные системы развиваются совершенно по-разному и страдают от разных проблем в старости. Эти различия мешают ученым использовать приматов для изучения некоторых человеческих болезней и выяснить, как Homo sapiens приобрел способность членораздельно говорить и мыслить.

В последние годы исследователи открыли несколько сотен новых генов, отвечающих за развитие мозга и отличающиеся по местоположению в геномах человека и шимпанзе. Однако им так и не удавалось найти те участки ДНК, которые отвечали за необычайно крупные по сравнению с остальным телом размеры человеческого мозга, а это одна из главных черт, отличающая Homo sapiens от .

И вот теперь генетики из Калифорнийского в Санта-Крузе нашли в человеческой ДНК уникальный ген NOTCH2NL, отвечающий за необыкновенно большие размеры нашего мозга и уникальную структуру коры больших полушарий. Его описание опубликовано в журнале Cell .

«Две главных черты человека – это большие размеры мозга и замедленное развитие нервной системы внутри утробы матери. Теперь нам удалось раскрыть молекулярные механизмы развития и той, и другой особенности Homo sapiens, которые, как оказалось, включаются на самых ранних стадиях развития мозга», – говорит руководитель исследования Дэвид Хаусслер.

Найти NOTCH2NL ученые смогли, изучая структуру разных генов на первой хромосоме человека, удаление которых очень часто приводит к развитию микроцефалии, а удвоение или повреждение – к макроцефалии или тяжелым формам аутизма.

В этом участке генетического кода находится набор генов из семейства NOTCH2, отвечающих за развитие заготовок нейронов и формирование будущих тканей мозга в зародыше млекопитающих. Их структура почти не отличается в ДНК всех приматов, и они, как недавно доказали ученые из России, одинаково работают при развитии зародыша.

Наблюдая за активностью этих участков ДНК в стволовых клетках, Хаусслер и его коллеги заметили одну простую вещь, которую почему-то упустили все остальные научные коллективы. Оказалось, что в человеческих клетках работает «лишний» ген, который отсутствует или не работает в заготовках нейронов шимпанзе, горилл и других приматов.

Опыты на стволовых клетках показали: удаление NOTCH2NL приводит к тому, что заготовки нервных клеток начинают быстрее взрослеть и реже делиться.

«Одна стволовая клетка, участвующая в росте мозга, может дать жизнь двум нейронам или еще одной заготовке и одной нервной клетке. NOTCH2NL заставляет их выбирать второй вариант, что позволило нашему мозгу вырасти в объеме. Как часто происходит в истории эволюции, небольшое изменение в работе стволовых клеток привело к очень большим последствиям», – заключают эксперты.

Изучив структуру гена, специалисты пришли к выводу, что он появился в ДНК наших предков примерно 3–4 млн лет назад в результате серии удачных ошибок при копировании первой хромосомы.

Первая ошибка привела к тому, что один из генов семейства NOTCH2 был частично скопирован и встроен в ДНК первых Homo sapiens. Это превратило его в «мусорный» псевдоген, не игравший никакой роли в работе организма. Вторая ошибка починила его поврежденные части, в результате чего в геноме протолюдей появился новый участок ДНК, радикально поменявший программу развития нервной системы. А в ходе последующей эволюции он был еще несколько раз скопирован.

Ровно 200 лет назад, 12 февраля 1809 года, родился Чарльз Дарвин. Во многом его усилиями людям стало окончательно понятно, кто они. Вид высших обезьян. И чем яснее становился этот, для кого-то неприятный ответ, тем острее вставал вопрос - чем человек отличается от других высших приматов.

А ответ на него дать на удивление трудно. Хотя отличия от самого близкого из доживших до наших дней родственников, шимпанзе, видны невооружённым глазом, предъявить критерий - необходимое и достаточное условие - принадлежности какой-либо обезьяны к человекам не удаётся.

По отдельным признакам - хоть анатомическим, хоть краниометрическим, хоть даже и френологическим - отличий хоть отбавляй. Что и позволяло в течение долгих и долгих лет ранжировать народы и расы по «степени совершенства», или эволюционной удалённости от обезьян. Сам ранжир осуществляли европейцы, потому основной мерой совершенства была, как правило, белизна кожи. Признаки, по которым дальше от обезьян ушли негры или азиаты (к примеру, длина полового члена или количество волос на теле соответственно), не рассматривались.

Но вот какого-то общего определения, отличающего человека от обезьяны, - нет.

Не верите? Попробуйте сами на досуге придумать такой критерий, и чтобы безо всяких оговорок. Время выполнения этой задачи ограничит только ваше упрямство.

Но даже если не удалось до конца разобраться в отличиях, это не повод оставить поиски их причин - пусть и формальных. К концу XX - началу XXI веков антропологи увлеклись генетикой. И раз уж «генотип определяет фенотип», давайте сравним ДНК человека и шимпанзе, и может, найдём какой-нибудь «ген человечности». Потом уж разберёмся, в какие внешние и внутренние отличия этот ген транслируется.

Геномы шимпанзе и нескольких других обезьян, прочитанные в последние годы, - горилл, орангутангов и макак - несколько разочаровали тех, кто надеялся найти человека в их сравнении с геномом Крейга Вентера и . Мы состоим из практически идентичных белков, и даже частота основного вида мутаций - единичных замен нуклеотидов («снипов») в генах этих белков (а это основа изменчивости и межвидовых отличий во многих линиях живых существ) у приматов — на пути от мартышки к человеку неуклонно падала. Падала и активность мобильных генетических элементов - транспозонов и им подобных, с которыми иногда связывают существенные перестройки генома даже при отсутствии перемен в самих белках.

Вместе с тем, чисто субъективно, отличия человека даже от самых совершенных из остальных приматов кажутся более значимыми, чем отличия, скажем, шимпанзе от гориллы. Хотя бы потому уже, что шимпанзе и гориллы до сих пор уживаются друг с другом неподалёку, на одном континенте, а человек захватил всю планету. И уже не со зла, а просто потому, что своей деятельностью способен изменять ландшафты на огромных территориях, угрожает существованию тех же горилл.

Группа американских, испанских и итальянских учёных под руководством Ивана Эйхлера из Университета американского штата Вашингтон решила разобраться со вторым типом мутаций - вариациями числа копий генов (CNV, copy number variations). При таких мутациях, в отличие от «снипов», в генетическом коде того или иного белка ничто не меняется. Вместо этого, как и следует из названия, происходит изменение числа копий - ген, кодирующий какой-то белок, может при переписывании генома скопироваться дважды, и значит, самого белка будет синтезироваться вдвое больше. Возможна и обратная ситуация, когда ген полностью удаляется.

Эйхлер и его коллеги сравнили CNV-профили макаки, орангутанга, шимпанзе и человека. По современным представлениям, именно в таком порядке отрастали ветви эволюционного дерева, на концах которых сейчас сидят перечисленные виды обезьян. Результаты сравнения опубликованы в последнем номере Nature, посвящённом 200-летию со дня рождения .

Как выяснилось при сравнении обезьяньих ДНК, темпы удвоения генов на ветви, ведущей к шимпанзе и человеку, удвоились.

В промежуток примерно с 8 до 6 миллионов лет назад, когда жил последний общий предок человека и шимпанзе, не являющийся одновременно предком гориллы, в среднем удваивалось по 60 генов за миллион лет. У общего предка всех гоминид эта скорость, согласно анализу, в 3-4 раза меньше. Правда, временная протяжённость этой более древней ветви до разветвления на понгин (орангутангов) и гоминин (шимпанзе, горилл и людей) больше, так что общее число удвоений практически то же самое.

По словам Ивана Эйхлера, поразительно, что это ускорение удвоений произошло ровно в то самое время, когда темпы накопления единичных мутаций, «снипов», напротив, резко упали для всех гоминид. При этом учёные нашли и примеры независимого возникновения одних и тех же удвоений у разных обезьян - например, удвоения, которые есть у орангутанга и человека, но нет у шимпанзе.

За примерно 2-3 миллиона лет существования общего предка шимпанзе и человека мы совместно накопили 20-25 миллионов пар нуклеотидов, являющихся копиями других сегментов генома. За последующие 5-6 миллионов лет - лишь 16-17 миллионов пар. При этом удвоения происходят не равномерно по геному, а в отдельных, по какой-то причине нестабильных его регионах.

Ещё более удивительно, что основной рывок дупликаций относится именно к общей ветви шимпанзе и человека.

Впрочем, Эйхлер и его коллеги, кажется, не намерены делать не самые приятные выводы.

«Окончательного ответа, почему люди и шимпанзе так отличаются, до сих пор нет, - говорит Томас Марк-Боне из исследовательской группы Эйхлера. - Может быть, отличие человека совсем не там».

Некоторые учёные полагают, что гены для человека и впрямь не так важны. Как рассказывает обозреватель Nature Эрика Хэйден в популярной статье , опубликованной в том же юбилейном номере Nature, всё большее число учёных склоняются к мысли о диспропорциональной роли «культурной» составляющей - в противовес «материальной», генетической, основанной на ДНК, - в человеческом наследии. Способности человека к технологическим инновациям и образованию в какой-то степени смягчили давление естественного отбора в его «дарвиновской» форме, позволив нам сохранить в геноме многие «вредные» мутации и не закрепить в нём многие «полезные».

Современный пример тому приводит оксфордский генетик Джилин Маквин. Благодаря очкам и люди с не очень хорошим зрением могут дожить до половозрелого возраста и передать свои гены - в том числе и плохого зрения - следующим поколениям. У наших далёких предков таких шансов не было.

Вместе с тем, сбрасывать «материальную» генетику с её пьедестала или подвергать её ведущую роль в передаче информации от поколения к поколению никто не собирается. Важная роль при этом отводится и отличиям по числу копий гена. Просто «теперь пора разобраться, что все эти отличия означают и как отражаются в генах», заключает Марк-Боне.

В 1975 году Мэри-Клэр Кинг и Аллан Уилсон опубликовали в журнале «Science» статью о генетическом подобии шимпанзе и человека. Увы, эта статья чаще цитировалась для подтверждения «почти полной идентичности» шимпанзе и человека, а не для того чтобы передать ее главную мысль о том, что никто по-настоящему не понимает, как происходила макроэволюция .

Если говорить вкратце, Кинг и Уилсон сравнили аминокислотные последовательности нескольких белков шимпанзе и человека (таких как гемоглобин и миоглобин), и нашли, что последовательности либо идентичны, либо почти идентичны. Каков был их вывод? «...Последовательности полипептидов шимпанзе и человека, изученные на данный момент, в среднем идентичны более чем на 99%

Так по вине ленивых читателей (не дочитавших ту статью до конца) родился "Миф об 1%" генетического различия Homo sapiens и Pan troglodytes , как его позднее назвал Йон Коген в своей статье в «Science» в 2007-м.

Были и другие эксперименты, которые, казалось бы, подтверждали сходство на 98,5 %. Но это была относительная цифра, поскольку сравнение проводилось только в кодирующих частях ДНК и только среди похожих генов с «заменой единичных оснований». Не брались в рассчет «вставки-удаления» и «повторы» в ДНК, поскольку тогда не представлялось возможным их сравнить. Последующие сравнительные анализы с применением новых технологий позволили уточнить данные.

В 2002 году Рой Бриттен, сравнив «вставки-удаления», обнаружил , что они увеличивают генетическое различие еще на 4%. С тех пор мнимая «идентичность» составляла менее 95% !

Иллюстрация различия геномов, обнаруженного группой Мэттью Ханна.

В 2006 году Мэтью Ханн с коллегами установил , что, «вставки-удаления» добавляют еще больше разницы, чем определил Бриттен — а именно 6,4% (то есть 1418 генов). Итого предполагаемое совпадение уменьшилось до 92-93% .

Ну и наконец, в 2008-м, была предпринята попытка провести сравнительный анализ огромных участков «повторов»(функция которых пока не до конца ясна), в результате которой выяснилось , что абсолютное сходство между ДНК человека и шимпанзе может составлять менее 90% .

Может показаться, что разница между 98% и 95% совсем незначительна, но если учесть, что ДНК человека состоит из 3 миллиардов пар оснований, тогда разница в 3% составит 90 миллионов пар оснований ! И к тому же, как подтверждают многолетние исследования, на кардинальные различия между человеком и шимпанзе влияет разница не столько в самих генах, сколько в их экспрессии — то есть их участии в производстве белков. Тем не менее, нет ни единой причины преуменьшать разницу в последовательностях ДНК.

Справка из Википедии:

Кодирующие белок последовательности составляют менее чем 1,5 % генома. Не учитывая известные регуляторные последовательности, в человеческом геноме содержится масса объектов, которые выглядят как нечто важное, но функция которых, если она вообще существует, на текущий момент не выяснена. Фактически эти объекты занимают до 97 % всего объёма человеческого генома.

То и дело, в различных источниках, всплывает миф о том, что "свинья генетически ближе к человеку, чем шимпанзе", и это заблуждение весьма устойчиво.

Отчасти, по причине того, что внутренние органы свиньи весьма неплохо подходят для пересадки человеку. А еще Бернард Вербер подлил масла в огонь со своей гнигой "Отец наших отцов" (но там, надо понимать, фантастика чистой воды).

А вот что думают по этому поводу специалисты-генетики, насколько всё-таки свинья и человек близки генетически?

Владимир Александрович Трифонов: Цифры гомологий генома имеют довольно невысокую ценность, все сильно зависит от того, что мы с чем сравниваем: учитываем ли структурные изменения генома, учитываем ли повторенные последовательности или же речь идет только о заменах в кодирующих областях.

Как сравнительный цитогенетик, я могу сказать, что эволюция кариотипов свиных сопровождалась большим количеством перестроек - даже от общего предка со жвачными и китообразными свиных отделяет 11 разрывов и 9 инверсий, плюс еще в линии свиней после отделения пекариевых произошло 7 слияний и три инверсии. Когда мы строим молекулярные филогении на основе данных секвенирования, то свинья никогда не попадает в родственники человеку, таких данных можно привести множество и они гораздо точнее и надежней, чем общие оценки молекулярных различий. Отличий между геномами свиньи и человека сотни тысяч, поэтому для их оценки используются специальные программы, которые, основываясь на сходстве и различии множества признаков строят филогенетические деревья. Положение на филогенетическом древе как раз и отражает степень сходства или различия между видами.

У филогенетиков есть свои трудности и свои противоречия, но сегодня мало кто сомневается в некоторых базовых идеях. Вот, например, три современные статьи, где филогении строились разными группами (являющимися общепризнанными экспертами в данной области), основываясь на множестве признаков, взятых из последовательностей ДНК:

Conrad A. Matthee et al. Indel evolution of mammalian introns and the utility of non-coding nuclear markers in eutherian phylogenetics. Molecular Phylogenetics and Evolution 42 (2007) 827–837.

Olaf R. P. Bininda-Emonds et al. The delayed rise of present-day mammals. Nature, Vol 446|29 March 2007.

William J. Murphy et al. Using genomic data to unravel the root of the placental mammal phylogeny. Genome Res. 2007 17: 413-421.

Во всех опубликованных филогениях (см., рисунок ниже) свинья прочно занимает свое место среди парнокопытных, а человек "никуда не выскакивает" из отряда приматов, т.е. данные, полученные по анализу разных последовательностей ДНК, одинаково отвечают на этот вопрос, подтверждая в этом вопросе филогении, построенные по морфологическим признакам еще в 19 веке.

Из рисунка видно, что свинья отстоит от человека дальше, чем мышь, кролик и дикобраз. Источник: William J. Murphy et al. Using genomic data to unravel the root of the placental mammal phylogeny. Genome Res. 2007 17: 418.

Михаил Сергеевич Гельфанд: про точный % совпадений ДНК, честно говоря, сходу не скажу, да и не очень понятно, что бы это значило: в генах? в межгенных промежутках? большая часть генома свиньи с человеком просто не выравнивается (в отличие от шимпанзе), там про % совпадений говорить не имеет смысла. В любом случае, свинья от человека дальше, чем мышь. А вот кто близок к свиньям - так это киты (правда, они еще ближе к гиппопотамам).

Вопрос. Константин Задорожный, главный редактор журнала для учителей "Биология" (Украина): В электронной книге уважаемого С. В. Дробышевского "Достающее звено" указано, что вторая хромосома человека образовалась в результате слияния двух хромосом предкового вида, которые у шимпанзе остались неслитыми (эту информацию лично я встречал и ранее, но в популярных изданиях она практически не освещалась). Соответственно, вопрос к кому-нибудь из экспертов. На каком этапе эволюции человека (ранние гоминиды, австралопитеки, ранние хомо и т.д.) произошла эта хромосомная аберрация? Возможно ли это определить?

Ответ. Владимир Александрович Трифонов: с удовольствием отвечу на Ваш вопрос, поскольку слияние хромосом предка шимпанзе и человека (соответствующих хромосомам PTR12 и PTR13 шимпанзе) действительно является последним значительным событием, изменившим кариотип человека.

Начнем с предка человекообразных обезьян - данные сравнительной геномики свидетельствует, что эти два элемента кариотипа были акроцентрическими, и именно в таком неизменном виде они сохранились у орангутана.

Далее у общего предка человека, гориллы и шимпанзе происходит перицентрическая инверсия, превратившая один из этих элементов в субметацентрик (этот элемент соответствует хромосоме PTR13 шимпанзе и хромосоме GGO11 гориллы). Затем у общего предка человека и шимпанзе происходит другая перицентрическая инверсия (в гомологе хромосомы PTR12 шимпанзе), превратившая ее в субметацентрик.

И, наконец, последнее событие уже в линии Homo - слияние двух субметацентриков с образованием хромосомы человека HSA2. Это не робертсоновское слияние (центрическое), а тандемное, при этом центромера PTR12 сохраняет свою функцию, центромера PTR13 инактивируется, а в точке тандемного слияния обнаруживаются предковые теломерные сайты (Ijdo et al., 1991).

По времени образования хромосомы HSA2 человека можно только сказать, что фиксация этой перестройки произошла после расхождения линий человек - шимпанзе, т.е. не раньше, чем 6.3 миллиона лет назад.

Я не думаю, что у человекообразных обезьян повышена частота робертсоновских транслокаций. У них очень консервативные кариотипы, мало меняющиеся на протяжении миллионов лет, за это время в кариотипах видов других таксонов происходили десятки значительных преобразований. Есть данные из клинической цитогенетики, указывающие на частоту 0.1% в мейозе человека (Hamerton et al., 1975). Однако анализ геномов показывает, что такие перестройки не зафиксировались в линии человека.

Вопрос . Алексей (письмо в Редакцию): Возникают вопросы по ходу прочтения лекций по геномике для Физтеха. Не дано определение гену...

Ответ. Светлана Александровна Боринская: Определение гену легко было дать, когда о нем еще не очень много было известно. Например "ген - это единица рекомбинации", или "ген - это участок ДНК, кодирующий белок", "Один ген - один фермент (или белок)", "Один ген - один признак".

Теперь ясно, что дело обстоит сложнее и с рекомбинацией, и с кодированием. Гены имеют разную структуру, порой довольно сложную.Один ген может кодировать много разных белков. Один белок может кодироваться разными фрагментами ДНК, находящимися в геноме на большом расстоянии, продукты которых (РНК или полипептидные цепи) соединяются по мере созревания в один полипептид.

Кроме того, в состав гена входят регуляторные участки. И еще есть гены, не кодирующие белки, а кодирующие только молекулы РНК (кроме всем известных рибосомных РНК это молекулы РНК, входяющие в состав других молекулярных машин, открытые не так давно микроРНК и другие
типы РНК). Поэтому сейчас есть много определений того, что такое ген. Ген - это концепция, которую трудно уложить в одно краткое всеобъемлющее определение.

Ответ С.Б.: Геном - это и есть ДНК. Или полный комплект молекул ДНК организма (в отдельной клетке) = геном.

При этом мы не подразумеваем клетки, в которых в процессе развития происходят перестройки ДНК (такие как клетки иммунной системы у млекопитающих или клетки животных, у которых происходит "диминуция хроматина" - утрата значительной части ДНК в процессе развития).

Ответ С.Б.: Е.coli - самая изученная бактерия, но и для нее до сих пор не для всех генов известны функции. Хотя по нуклеотидной последовательности гена можно "вывести" аминокислотную последовательность белка. Для хорошо изученных бактерий примерно для половины генов известны функции кодируемых ими белков. Для части генов получены экспериментальные подтверждения функций, для части - предсказания делаются на основе сходства структуры белка с другими белками с известными функциями.

Вопрос. Алексей: Правильно ли я понимаю, что количество входящих в ген нуклеотидов для каждого гена различно? Какой-либо закономерности здесь нет.

Ответ С.Б.: Совершенно верно.

Вопрос. Алексей: Могут ли различные гены иметь абсолютно аналогичную последовательность нуклеотидов, но отличаться только местоположением?

Ответ С.Б.: Абсолютно идентичных генов, наверное, все же нет. Но расположенные в разных участках генома гены с очень близкой последовательностью нуклеотидов имеются. Только их называют не "аналогичными", а "гомологичными". Эти гены произошли в результате дупликации предкового гена. Со временем в них накапливаются замены нуклеотидов. И чем ближе к нам время дупликации, тем больше похожи гены. Дупликации генов встречаются у всех организмов - от бактерий до человека.

При этом разные гены у разных людей могут содержаться в разном количестве копий. Количество копий может влиять на активность соответствующих продуктов генов. Например, разное количество генов определенных цитохромов влияет на скорость метаболизма и выведения из организма лекарственных препаратов и, соответственно, рекомендуется применять разные дозы.

Вопрос. Алексей: Также хотелось бы услышать мнение специалистов касательно материалов, предоставляемых Гаряевым (имеется в виду т.н. теория "волнового генома"). Он утверждает что его опыты подтверждаются экспериментально в лабораториях. Так ли это. Что можете сказать на это?

Ответ С.Б.: Вы тоже можете утверждать все, что Вам вздумается. Но научный мир обратит внимание на Ваши утверждения только в том случае, если они будут опубликованы в рецензируемых научных журналах, да еще представлены с описанием деталей эксперимента, позволяющим его повторять.

Г-н Гаряев в научных журналах не публикует свои "открытия", только журналистам рассказывает. Никаких данных о проведенных им "опытах" нет, только его слова. Пусть хотя бы лабораторный журнал покажет с подробной записью условий и результатов экспериментов.

Ученым удалось полностью расшифровать геном ближайших биологических родственников человека - шимпанзе.

Геном шимпанзе насчитывает 2,8 миллиардов оснований ДНК ("букв" генетического кода), и чрезвычайно похож на геном человека. Ученые насчитали в среднем лишь по две мутации, связанных с изменениями белков, на каждый ген, а 29% генов у человека и шимпанзе абсолютно идентичны.

Лишь несколько генов, имеющихся у человека, полностью или частично подавлены у шимпанзе.

Однако сходство или различие в геном е видов - далеко не главное. Например, геном ы двух видов мышей - Mus musculus и Mus spretus - различаются между собой примерно в той же степени, что у человека и шимпанзе, однако указанные два вида мышей еще более сходны между собой.

А внешние различия между домашними собаками, как известно, могут быть колоссальны, однако их геном в среднем сходен на 99,85%. Так что в эволюционном смысл е большинство различий между шимпанзе и людьми не приносят видам ни преимуществ, ни недостатков, поясняют ученые.

Поэтому главный вызов для ученых - отыскать именно те генетические изменения, которые привели к ныне наблюдаемым различиям у двух видов после их разделения 5-8 миллионов лет назад. Пока никаких явных улик найти не удалось, хотя и опознаны некоторые кандидаты.

Ученые, в частности, сравнили 13454 гена в поисках признаков быстрой эволюции. Между собой сравнивалось количество мутаций, изменяющих одну "букву", и количество "молчащих" мутаций, не оказывающих никакого эффекта вовсе. Таковые возможны, поскольку большинство аминокислот кодируются более чем тремя буквами ДНК.

Сравнение двух типов ДНК позволило специалистам выявить гены, изменения которых связаны с естественным отбором, с учетом среднего количества мутаций. 585 генов, изученных в ходе этого исследования, - многие из которых связаны с иммунными и репродуктивными системами, - имели больше белковых мутаций, чем "молчащие" гены. Их и будут исследовать в надежде найти ключ к различиям шимпанзе и человека.

Шимпанзе "расскажут" о людях

Последовательность геном а шимпанзе, которая состоит из 2,8 миллиардов пар оснований, не только расскажет многое о шимпанзе, но и о нас - людях, считают исследователи. Собственно, сопоставление геном ов и есть главная цель этого исследования, которое "расшифровкой шимпанзе" далеко не заканчивается.

Саймон Фишер из Оксфордского уточнил, что "самой трудной задачей на будущее является выявление тех крошечных различий, благодаря которым сформировались уникальные человеческие черты, такие, как язык человека".

Предварительные результаты исследований показали, что мозг человека отличается своим большим объемом и сложным устройством главным образом благодаря тому, что существующие в человеческом организме гены вырабатывают протеин именно тогда, когда мозг человека увеличивается в объеме, в период внутриутробного развития человеческого зародыша и в младенчестве.

Гены считывания генетической информации – молекулы, которые регулируют активность других генов и играют важнейшую роль в развитии эмбриона – также более развиты в организме человека, по сравнению с шимпанзе.

У шимпанзе нет трех важных генов, которые связаны с развитием воспалительного процесса при реакции человеческого организма на болезнь, и этим можно объяснить разницу, существующую между иммунными системами человека и шимпанзе, поясняют ученые. С другой стороны, люди утратили ген энзима, который может защитить от болезни Альцгеймера.

Пока ученые уверены, что самая большая разница между генами человека и шимпанзе находится в хромосоме, определяющей сексуальное поведение самцов. В этой хромосоме некоторые гены у шимпанзе за 6 млн лет подверглись мутации и утратили свою активность, в то время как у человека в этой хромосоме сохранились 27 активных видов генов. Вероятно, в организме человека существует механизм "восстановления" утрачивающих активность таких генов, чего нет у шимпанзе.

ДНК шимпанзе и человека идентичны на 96% Клив Куксон
Первое детальное сравнение генов человека и шимпанзе показало, что цепочка ДНК у них идентична на 96%. Но есть и существенные различия, особенно в генах, отвечающих за сексуальное поведение, развитие мозга, иммунитет и обоняние.
В четверг в журнале Nature международный научный консорциум опубликовал результаты исследования геном а шимпанзе – животного, которое имеет наибольшее сходство с homo sapiens. Шимпанзе стал четвертым млекопитающим, геном которого полностью расшифровали ученые, после геном а мыши, крысы и человека.

Часть научного анализа трех миллионов химических символов генетического кода шимпанзе посвящена его удивительному сходству с геном ом человека. Спустя 6 млн лет независимой эволюции разница между шимпанзе и человеком в 10 раз больше, чем разница между двумя людьми, не находящимися в родстве, и в 10 раз меньше, чем различия, существующие между крысами и мышами.

Но большинство ученых сосредоточивают внимание на различиях между генами шимпанзе и человека. Саймон Фишер из Оксфордского университета говорит о том, что "самой трудной задачей на будущее является выявление тех крошечных различий, благодаря которым сформировались уникальные человеческие черты, такие, как язык человека".

Предварительные результаты исследований показали, что мозг человека отличается своим большим объемом и сложным устройством главным образом благодаря тому, что существующие в человеческом организме гены вырабатывают протеин именно тогда, когда мозг человека увеличивается в объеме, в период внутриутробного развития человеческого зародыша и в младенчестве. Гены считывания генетической информации – молекулы, которые регулируют активность других генов и играют важнейшую роль в развитии эмбриона – также более развиты в организме человека, по сравнению с шимпанзе.

У шимпанзе нет трех важных генов, которые связаны с развитием воспалительного процесса при реакции человеческого организма на болезнь, и этим можно объяснить разницу, существующую между иммунными системами человека и шимпанзе. С другой стороны, люди утратили ген энзима, который может защитить от болезни Альцгеймера.

Самая большая разница между генами человека и шимпанзе находится в хромосоме, определяющей сексуальное поведение самцов. В этой хромосоме некоторые гены у шимпанзе за 6 млн лет подверглись мутации и утратили свою активность, в то время как у человека в этой хромосоме сохранились 27 активных видов генов. Вероятно, в организме человека существует механизм "восстановления" утрачивающих активность таких генов, чего нет у шимпанзе.

Дэвид Пейдж из Института биомедицинских исследований в Уайтхеде предполагает, что такую разницу можно объяснить особенностями сексуального поведения людей и шимпанзе. У приматов есть множество сексуальных партнеров, поэтому в развитии генов большее значение имеют гены, связанные с производством спермы, в то время как у людей, в большинстве своем придерживающихся моногамии, идет развитие и ряда других генов.




Анонсы новостей - что это?
Моделирование нейронных сетей мозга
Послойное моделирование нейронных сетей с индивидуальными периодами развития: .
22-12-2019г.

Политика в США и западного мира на всех уровнях основана на лжи
Несколько статей, позволяющих сделать обоснованное утверждение: .
01-11-2019г.

Слава и первая смерть
Футуристическая фантастика: .
27-07-2019г.

Почему артисты становятся президентами
Про то, как опытные журналюги, блоггеры и артисты используют свои навыки для вранья в пользу своих представлений и активно продвигают это вранье методами изощренной, давно отрепетированной риторики.
: .
26-06-2019г.

Особенности понимания схемотехнических систем
В чем заключаются основные причины современного недопонимания функций адаптивных уровней эволюционного развития мозга: