Благодаря развитию современной науке стали доступны принципиально , отличающиеся высокими потребительскими характеристиками и уникальными свойствами – полимеры. Сегодня они применяются практически во всех сферах строительства и жизнедеятельности человека. Наиболее распространенными и широко применяемыми стали такие материалы как полиуретаны, полиэтилены, и полистиролы.

Наибольшими функциональными возможностями обладает первый вариант полимеризированных материалов, который еще называют «веществом с неограниченными возможностями ». В зависимости от области применения он может быть очень мягким и эластичным, либо максимально прочным и твердым. Уникальность полимера состоит в том, что еще на стадии синтезы, зная правильные пропорции дополнительных компонентов и присадок, можно получить материал с нужными свойствами.

В последнее время широкую популярность приобрел новый материал – эластичный полиуретан, который обладает всеми полезными свойствами каучуков и резин, а благодаря уникальному составу, превосходит все известные эластомеры.

История возникновения

Эластичный полиуретан – что это такое? Это специальный синтезированный материал, полученный из искусственных каучуков, обладающий эластичными свойствами и высокой прочностью. Впервые были синтезированы в 1937 году, а полноценное производство началось только через 20 лет.

Широкое распространение получила эластичная полиуретановая нить, которая была синтезирована и запущена в производство в 1958 году в США. Спрос на новый материал был настолько огромным, что уже через несколько лет его начали производить крупнейшие мировые страны – Америка, Япония, СССР.

Эластичные полимеры в виде нитей или волокон имеют множество названий в зависимости от фирмы производителя, состава и технических характеристик. «Лайкра», «Эластан», «Спандекс», «Линель», «Дорластан» – все это довольно известные названия эластичных полиуретанов.

Эластичные волокна из полиуретана можно получить четырьмя основными способами:

  • методом экструзии из расплавленного жидкого полимера;
  • формованием при помощи химически активных веществ (реактивов);
  • сухой формовкой;
  • мокрой формовкой из раствора.

В зависимости от способа получения могут немного отличаться основные и параметры эластичных полиуретановых волокон.

Основные технические характеристики и свойства

Вне зависимости от метода получения, все эластичные полиуретаны обладают основными технологическими свойствами:

  • высокий коэффициент механической прочности;
  • водонепроницаемость;
  • эластичность и гибкость;
  • экологическая чистота и безопасность;
  • практически не подвержен усадке во время эксплуатации.

Кроме того, материал быстро восстанавливает первоочередную форму после снятия с него дополнительной нагрузки и обладает высокой прочностью на разрыв (особенно полиуретановые нити и волокна).

Эти качества высоко ценятся в различных сферах производства, что позволило эластичным полиуретанам стать незаменимыми материалами во многих отраслях промышленности и жизнедеятельности человека.

Жидкий двухкомпонентный полимер

В последнее время широко стал использоваться полиуретан жидкий эластичный – отдельный вид полиуретановых эластомеров, из которого получают формы для литья и матрицы.

От других материалов, используемых при изготовлении художественных декоративных элементов, полиуретан отличается повышенной прочностью и стойкостью к температурам. При правильном приготовлении смеси и соблюдении всех пропорций, готовый материал легко выдерживает повышение температуры до 70-100 градусов, не теряя при этом своих основных качеств.
Для сферы полупромышленного литья, особую роль играет качество первичной матрицы и литьевых форм. Полученные из двухкомпонентного полиуретана, формы обладают целым рядом полезных свойств.

В первую очередь, это износостойкость. Такой показатель является очень важным при мелкосерийном производстве, так как позволяет отлить определенное количество скульптур, декоративных или художественных элементов, пользуясь лишь одной формой.

Второй показатель качества – прочность на разрыв в сочетании с высокой гибкостью. Третье ключевое свойство материала – отсутствие усадки. Благодаря этому качеству из полиуретановых форм можно получить большое число изделий, которые будут идентичны изначальному образцу (матрице).

Эти и другие свойства позволили при помощи литьевых форм изготавливать различные декоративные отделочные материалы, в первую очередь, который получают из гипса или цемента с добавлением специального красящего пигмента.

Особое внимание стоит обратить на условия хранения двухкомпонентного жидкого полиуретана . Емкости с веществом должны быть плотно закрыты (в идеале, быть герметичными), так как вещество подвержено сильному окислению под воздействием кислорода. При неправильном хранении материал начнет самопроизвольно вспениваться и его дальнейшее применение уже будет невозможным.

Не стоит также самостоятельно экспериментировать с пропорциями основного вещества и катализатора (отвердителя). Вне зависимости от марки полиуретана, все производители дают четкие рекомендации относительно массы всех взаимодействующих компонентов. Нарушив пропорцию, можно получить итоговый материал с абсолютно не теми свойствами, как хотелось.

Итоги

Эластичные полиуретаны нашли широкое применение в различных отраслях производства и во многих сферах народного хозяйства благодаря своим качествам и характеристикам.

Жидкий двухкомпонентный полиуретан – один из немногих материалов, успешно применяющийся при массовом потоковом производстве материалов для декоративной отделки помещений из гипса, цемент или бетона.

Эластичные волокна комбинируют с другими типами материалов для получения прочных и износостойких нитей, которые применяются как для пошива спортивной одежды, так и для высокопрочных полимерных тканей, использующейся в военной промышленности, и даже для производства специальных безвоздушных шин.

Заявка на товар/услугу

(кратко ПУ) представляет собой полимер, отличающейся упругостью, износостойкостью. Полиуретановые продукты широко распространены на промышленном рынке благодаря широкому спектру прочностных характеристик. Эти материалы вытеснили изделия из резины, так как их можно эксплуатировать в агрессивных средах, при больших динамических нагрузках и в более широком спектре температур. Спектр рабочих температур для данного материала соответственно -60 °C - +110 °C.

На рынке промышленности полиуретан чаще всего представлен в виде твердых заготовок (листов, стержней). Но используются и более мягкие - вспененные формы полиуретана, а также материал в жидком виде.

Купить листовой полиуретан можно толщиной от 5 до 80 мм, размер листа – 50×50 сантиметров мм. Стержни - диаметром 20 – 200 мм при длине 400 – 600.

Полиуретановые изделия составляют серьезную конкуренцию металлическим, пластиковым и резиновым аналогам.

ПУ - современный, востребованный и безопасный полимер. Он эксплуатируется для производства разнообразных потребительских, промышленных товаров, которые делают нашу жизнь удобнее и при этом являются экологически безопасными.

Свойства, характеристики полиуретана

Полиуретан (ПУ), отличающийся высокой эластичностью, вязкостью, относится к группе эластомеров. Эти материалы способны удлиняться под нагрузкой (растяжение) и возвращаться в начальное состояние без структурных изменений после снятия нагрузки.

Если рассматривать пару «полиуретан - резина», то первый материал превосходит второй по:

  • эластичности - относительное удлинение при разрыве полиуретана в два раза больше;
  • прочности - прочность в два раза выше;
  • устойчивости к истиранию - износостойкость полиуретана в три раза больше;
  • стойкости к озону - не разрушается при взаимодействии с озоном.

Полиуретановые листы, стержни, другую продукцию отличают физико-химические свойства, которые определяют возможность их эксплуатации в различных сферах промышленности:

  • полиуретан нейтрален к ряду кислот, растворителей, поэтому его используют: в типографиях (валки печатающих устройств), химической промышленности, для хранения химических реактивов;
  • высокая твердость (около 98 ед. по шкале Шора) позволяет применять его вместо металла там, где существуют высокие механические нагрузки. Например: для изготовления ведущих элементов конструкций машин на гусеничном ходу;
  • у эластомера большая ударная вязкость, стойкость к вибрациям. Эти качества позволяют использовать его для производства ремней приводных, лент для конвейеров, пружин, сит для грохотов в горнодобывающей отрасли, демпферов, прочих изделий;
  • стойкость к повышенному давлению делает возможным использование для производства манжет, колец, втулок, вкладышей, сальников высокой прочности;
  • ПУ имеет низкую теплопроводность. Он сохраняет упругость при отрицательных температурах до -50 °C. Также работает при температурах до 110 °C и даже может выдержать непродолжительное увеличение температуры до 140 °C. Это дает возможность использовать полимер для изоляции холодильных складов, изготовления полиуретановых колес или колес, гуммированных (обрезиненных) полиуретаном;
  • из-за стойкости к воздействию бензина, масел вышеупомянутые гуммированные колеса более предпочтительны по сроку эксплуатации, чем каучуковые и резиновые. Также по сроку службы выигрывают полиуретановые уплотнения, используемые в нефтяной промышленности;
  • полиуретаны – диэлектрики, поэтому полиуретановое покрытие обеспечивает не только водо-, термо- , но и электроизоляцию;
  • химическая неактивность, стойкость к возникновению плесени, микроорганизмам делает предпочтительным эксплуатацию в пищевой промышленности, медицине;
  • полиуретановые листы, втулки, стержни, другие изделия способны подвергаться многократным деформациям без изменения прочностных свойств. Большой срок эксплуатации, надежность делают такую продукцию более востребованной, в сравнении с резиновыми аналогами. Для различных отраслей промышленности возможно изготовление колес, валков, роликов, валов, имеющих полиуретановое покрытие, а также гуммированных мельничных барабанов или непосредственно мелющих поверхностей.

Подведем итог. Полиуретановые детали мало подвержены процессу старения, стойки к воздействию окружающей среды, воздействию влаги, химических элементов, абразивному износу, коррозии. По своим свойствам они не уступают металлическим, пластиковым и превосходят резиновые изделия.

Листовой полиуретан - это прямоугольная пластина, изготовленная из упругого эластичного полимера. Качество полиуретановых листов регламентируется ТУ 84-404-78.

Методы изготовления полиуретановых листов - прессование, экструзия (выдавливание), литье. Поверхность листового полиуретана, в зависимости от эксплуатационных требований, может обладать как антифрикционными, так и противоскользящими свойствами. Свойства определяются химсоставом, особенностями структуры.

Чаще всего производят листы с шириной от 0,1 до 0,2 м, длиной от 1 до 1,5 м, толщиной от 20 до 300 мм. Данный размерный ряд может быть изменен по требованию заказчика.

Наиболее часто встречаются литьевой полиуретан СКУ-ПЛФ, СКУ-7Л.

Рассмотрим физико-химические характеристики литьевого полиуретана СКУ-7Л:

  • прочность при растяжении - 30 МПа;
  • условное напряжение при растяжении образца до 100% - около 2 МПа;
  • спектр рабочих температур - от -50 °C до 100 °C;
  • твердость по шкале Шора - 75-85 ед.;
  • плотность полиуретана - 1180 кг/м³;
  • относительное удлинение - 450%.

Уникальные свойства листовых изделий из ПУ (листов, плит, пластин), обусловленные их долговечностью, практичностью, делают их широко востребованными во многих промышленных сферах. Так, например, из листового ПУ производят такую продукцию:

  • строительная отрасль - нескользкие половые покрытия; части фасадов, устойчивые к вибрации;
  • конструирование машин, механизмов - детали, контактирующие с маслами, шины, втулки;
  • тяжелая промышленность - детали амортизаторов, футеровка;
  • легкая промышленность, например обувная - подошвы для обуви.

Полиуретан стержни

Это цилиндрическая заготовка, изготовленная из износостойкого упругого полимера. Качество полиуретановых стержней сопоставимо с ТУ 2226-001-37455706-2011.

Методы изготовления стержней ПУ аналогичны методам производства листов ПУ: литье, экструзия, прессование.

Два основных габаритных размера стержней: диаметр от 20 до 300 миллиметров, длина, которая определяется по ТУ 84-404-78 косвенным методом. Основное условие - заготовка определенного диаметра не должна весить более 150 килограмм.

Уникальные свойства полиуретановых стержней , обусловленные возможностью синтезировать полимеры с различными свойствами (например, с разным показателем коэффициента трения), делают их широко востребованными во многих промышленных сферах. Так, например, из полиуретановых стержней производят такую продукцию:

  • строительная отрасль - элементы фасадов, крепежные детали, устойчивые к вибрационным нагрузкам;
  • производство машин, механизмов - детали, контактирующие с маслами, валы, втулки, подшипники;
  • медицина - имплантаты, протезы;
  • легкая промышленность, как пример - обувная, текстильная.

Вспененный ПУ (поролоны)

Представляет собой пористое, газонаполненное на 85-90% инертным газом синтетическое изделие. Зависимо от метода производства, состава – различается по степени эластичности. Может быть как мягким (поролон) так и жестким, который почти не подвержен деформации.

Широко востребован в промышленности, строительстве двухкомпонентный вспененный полиуретан – ППУ, который образуется путем смешивания двух компонентов. Реакция протекает очень быстро – в течение 5-10 секунд ППУ вспенивается, затем затвердевает. В результате получается легкая масса с низкой тепловой проводимостью, которая не гниет, не поддерживает самостоятельное горение, не подвергается воздействию влаги, щелочей, органических растворителей, слабых кислот. Вспененный ППУ очень востребован в качестве утеплителя, шумоизоляции. Прекрасно заполняет поры, не позволяя тем самым образовываться мостикам холода. Применяется в широком температурном диапазоне от -60°С до+140°С, практически не меняет своих свойств со временем.

Достоинства, недостатки

Используется в промышленности наряду с прочими материалами, такими как металл, резина, пластик. Одним из основных преимуществ ПУ является возможность получать изделие с необходимым регулируемым коэффициентом трения. Также следует отметить прочность, твердость, сравнительную легкость, способность к удлинению до 650%. Кроме этого ПУ - диэлектрик, устойчивый к атмосферным воздействиям, химическим веществам.

Полиуретан или металл?

Сравним пару «металл - полиуретан» для определения положительных свойств последнего. ПУ детали более эластичны, менее тяжелые, устойчивы к воздействию абразивов. Не проводит электрический ток, имеет звукоизоляционные свойства. Полиуретановые детали долговечнее, дешевле, чем аналогичные из металла. Применение ПУ в производстве требует меньших вложений во время эксплуатации, ремонта, что ведет к удешевлению конечного продукта.

Полиуретан или резина?

Пара «резина - полиуретан» выявляет следующие преимущества ПУ: устойчивость к высоким нагрузкам, загрязнениям, воздействию масел; способность быстрее восстанавливать форму после деформирования; высокую эластичность.

ПУ или пластик?

А рассматривая пару «пластик - полиуретан», можно отметить такие достоинства ПУ: устойчивость к механическим, ударным воздействиям, сохранение эластичности (даже в режиме низких температур); стойкость к действию абразивных составов. Также из полиуретана можно при необходимости сформировать более толстый слой, чем из пластика.

Основной недостаток полиуретановых листов, стержней, других изделий - сложность переработки, утилизации отходов.

Материал неустойчив к воздействию таких химических реактивов, как азотная, фосфорная, метановая кислоты. Кроме того, в условиях высоких температур, ПУ может разрушаться от длительного взаимодействия со щелочами. Полиуретановые детали могут изменять свои физико-химические показатели при эксплуатации в интервале температур отличном от рабочего.

Ряд изделий, которые изготавливают из ПУ, имеет существенные недостатки. К примеру, обувь с подошвой из полиуретанового материала считается «слабо дышащей». А лепнина, карнизы, выполненные из вспененного полиуретана, в процессе работы может быть легко повреждена из-за пористой структуры.

Изготовление полиуретана

ПУ изготавливают с помощью литья, прессования, выдавливания, заливки на специальном оборудовании. Полиол и изоционат, входящие в состав, представляют собой продукты, которые синтезированы из нефти.

На промышленном рынке используют следующие виды эластомера:

  • жидкий, вспененный (пенопласт, поролон);
  • твердый (лист, стержень, пластина);
  • напыляемый (полимочевина).

Для изготовления твердого ПУ чаще всего используют технологию литья в формы под давлением либо разлив жидкой расплавленной смеси в открытые матрицы без давления. Реже для получения твердого ПУ применяют технологический процесс выдавливания (экструзии).

Цена, размеры, вес

Итоговая стоимость полиуретановых листов определяется их толщиной, размерами, маркой, предприятием-изготовителем, общим объемом заказа, другими факторами (например, доставка). Оптовая цена всегда ниже розничной. Оптовая стоимость 10 мм полиуретанового листа (0,5×0,5м) - от 1878 руб. (импортного производства) до 2160 (отечественного). Пластины толщиной 40, 50 мм дороже – 8600 и 10760 руб/лист соответственно, габариты стандартные, 0,5×0,5 м. За полиуретановый лист толщиной 80 мм стандартных размеров придется оплатить 14800 руб, вес пластины будет составлять около 24,5 кг).

Вес полиуретана листового размером 0,5*0,5 метра (толщина, мм – вес, кг):

  • 5 - 1,65;
  • 10 - 3,12;
  • 15 - 4,74;
  • 20 - 5,9;
  • 25 - 7,95;
  • 30 - 9,2;
  • 40 - 12,5;
  • 50 - 15,5;
  • 60 - 19,6;
  • 80 - 24,5.

Оптовая цена полиуретановых стержней начинается от 94 руб/шт (длина 0,5м, диаметр 20 мм, вес – 240 гр., импортного производства). Стоимость 1 кг полиуретановых стержней (отечественных) – от 690 руб. Полиуретановый стержень диаметром 35 мм будет стоить 335 руб. за штуку, 50 мм – 665 рублей, 60 – 975, 80 мм – 1400 рублей, 100 – 2700, 150 мм – 6090, 200 мм – от 10810 рублей.

Цена на вспененный полиуретан начинается от 400 рублей за килограмм.

История

Опыты по получению универсального продукта, способного конкурировать с пластиком, резиной, металлом, велись независимо в США, Германии в период с 30-х до 40-х годов прошлого века. Химик из Америки У. Х. Карозерс изобрел искусственный каучук и нейлон, а известный германский химик-технолог О. Г. Байер считается изобретателем полиуретана. О.Г.Байер и его команда впервые синтезировали эластичные, твердые эластомеры-полиуретаны.

Промышленное производство материала было начато Германией в 1944 году, в Америке более чем на десять лет позже - 1957 год.

В СССР работать над проблемой синтеза полиуретана начали лишь в 60-е годы.

За время работы, как отечественный, так и импортный продукт претерпел множество изменений, направленных на улучшение качества, разработку материалов с уникальными характеристиками.

Применение

Полиуретановые листы, стержни, втулки, другая продукция, в силу своей универсальности, эксплуатируются в различных отраслях. Вот, некоторые из них:

  • строительство (термо-, водоизоляционные панели, листы, лепнина, карнизы);
  • химическая отрасль (клеи, герметики, лаки, краски);
  • бумажная, полиграфическая отрасль (валки, валики, покрытия поверхности);
  • производство машин, механизмов (узлы и детали машин, уплотнения, покрытия поверхности);
  • нефтегазовая (уплотнения, маслостойкие клапаны);
  • горнодобывающая отрасль (сита для грохотов, покрытия и мелющие части мельниц);
  • радиоэлектроника (изоляционные материалы);
  • легкая промышленность (бобины для ниток, ролики для скручивания, клеи, подложки);
  • медицина (катетеры, имплантаты, протезы);
  • пищевая отрасль (конвейерные ленты).

Итак, полиуретановые стержни, листы, другие изделия во многом по своим техническим характеристикам превосходят резины, обычные пластические массы, каучуки, даже металл, благодаря чему потребление данной продукции с каждым годом значительно возрастает. Открываются новые возможности применения.

Полиуретан – один из самых востребованных многофункциональных полимеров, конструкционных материалов.

гетероцепные полимеры, содержащие незамещенные и(или) замещенные уретановые группы —N(R)—С(О)О— (R = Н, алкил, арил или ацил). Кол-во уретановых групп зависит от мол. массы П. и соотношения исходных компонентов. В зависимости от природы последних в макромолекулах П. могут содержаться и др. функц. группы: простые эфирные и сложноэфирные (полиэфир-уретаны), мочевинные (полиуретанмочевины), изоциан-уратные (полиуретанизоцианураты), амидные (поли-амидоуретаны), двойные связи (полидиенуретаны), к-рые наряду с уретановой группой определяют комплекс св-в полимеров. Известны линейные и сетчатые П., а также уретансодержащие взаимопроникающие полимерные сетки и уретанфункцион. олигомеры.

Получение. Осн. традиц. способ синтеза П., используемый в пром-сти,-взаимод. соединений, содержащих изоцианат-ные группы, с би- и полифункцион. гидроксилсодержащими производными.

При эквимолярном соотношении двух бифункцион. компонентов синтеза образуются линейные П. Однако получение П., не содержащих поперечных связей, не представляется возможным из-за высокой реакц. способности изоцианатной группы по отношению к любым соед. и группам, содержащим активный атом водорода (вода в компонентах и окружающей среде, уретановые группы в образующейся цепи). Поэтому т. наз. линейные П. следует рассматривать как слаборазветвленные полимеры.

Сетчатые П. получаются в след. случаях: 1) по крайней мере один из компонентов синтеза имеет функциональность более двух (образуются уретановые поперечные связи); 2) наряду с двумя основными компонентами синтеза используют агенты удлинения и структурирования (строение хим. поперечных связей определяется природой агентов структурирования: в случае триодов образуются уретановые группы, в присут. воды, диаминов - биуретовые, карбоксилсодер-жащих соед.- амидные, серы - полисульфидные); 3) в макромолекулы П. в ходе синтеза вводят функц. группы, содержащие активный атом водорода, напр. мочевинные, и используют изоцианатный компонент в избытке по отношению к гидроксилсодержащему (биуретовые поперечные связи); 4) проводят циклотримеризацию изоцианатных групп в присут. специфич. катализаторов, в результате чего образуется узел сшивания - изоциануратный цикл.

Таким образом получают полиуретанизоцианураты.

Менее распространен синтез П. из биохлорформиатов гликолей (низкомолекулярных или олигомерных) и диаминов.

R-алкилен, остаток олигомера; R"-алкилен, арилен Скорость р-ции высока; однако из-за выделения НС1 и необходимости применения акцепторов для его связывания широкое практич. применение этого способа ограничено. Этим способом получают N-замещенные П. (напр., из пиперазина), отличающиеся более высокой тепло- и морозостойкостью, чем их незамещенные аналоги.

Замещенные П. могут быть получены также ацетилирова-нием незамещенных линейных П. уксусным ангидридом в р-ре (кат.-хлорная к-та).

В основе синтеза т. наз. безизоцианатных П. лежат нетрадиционные р-ции уретанообразования. Напр., полиоксипро-пиленгидроксиуретаны получают из олигомеров пропилен-оксида, содержащих концевые циклокарбонатные группы (мол. м. 800-2000), и алифатич. диаминов.

Таким способом получают П. принципиально иного строения с новыми св-вами (в данном случае-с повыш. стойкостью к действию щелочей и высоких т-р), чем традиционные П. на основе полиоксипропиленгликолей.

Уретансодержащие взаимопроникающие полимерные сетки (ВПС) получают из разветвленных или сетчатых П. и полимеризующихся мономеров или реакционноспособных олигомеров. Напр., сетчатый П. подвергают сначала набуханию в стироле или олигоэфиракрилате, а затем-полимеризации и(или) отверждению. Св-ва ВПС неаддитивны св-вам индивидуальных полимеров, их составляющих (см. также Сетчатые полимеры).

Уретанфункцион. олигомеры получают взаимод. изо-цианатсодержащих форполимеров (см. ниже) с соединениями НО—R"—f, где f- функц. группа, напр. эпоксидная, метакрилатная, пероксидная; R"-алкилен. Напр., для синтеза олигоуретанэпоксидов используют глицидол.

Такие олигомеры способны отверждаться теми же отверди-телями, что и их аналоги, не содержащие уретановых групп. Продукты для получения П. 1. Изоцианаты: толу-илендиизоцианаты (2,4- и 2,6-изомеры или их смесь в соотношении 65:35), 4,4"-дифенилметан-, 1,5-нафтилен-, гекса-метилендиизоцианаты, полиизоцианаты, трифенилметан-триизоцианат, биуретизоцианат, изоциануратизоцианаты, димер 2,4-толуилендиизоцианата, изоцианаты блокированные (см. также Изоцианаты). Перечисл. диизоцианаты используют для синтеза всех типов П., полиизоцианаты-для получения жестких пенополиуретанов и лакокрасочных покрытий, биурет- и изоциануратизоцианаты-гл. обр. для получения лакокрасочных покрытий, трифенилметантриизо-цйанат-в осн. для сшивания относительно низкомолекулярных П., содержащих концевые группы ОН, в двухупако-вочных клеевых композициях, блокир. диизоцианаты-в одноупаковочных. Строением диизоцианата определяются скорость уретанообразования, прочностные показатели, свето- и радиац. стойкость, жесткость П.

2. Гидроксилсодержащие компоненты: 1) олигогликоли -продукты (мол. м. 1000-5000) гомо- и сополимеризации ТГФ, пропилен- и этиленоксидов (полиоксиалкиленглико-ли), дивинила, изопрена (олигодиендиолы); 2) сложные полиэфиры с концевыми группами ОН-линейные продукты поликонденсации адипиновой, фталевой и др. дикарбоновых к-т с этилен-, пропилен-, бутилен- или др. низкомол. глико-лями; разветвленные продукты поликонденсации перечисл. к-т и гликолей с добавкой триолов (глицерина, триметилол-пропана), продукты полимеризации е-капролактона. Гидроксилсодержащий компонент определяет в осн. комплекс физ.-мех. св-в П.

3. Агенты удлинения и структурирования цепей: 1) гидро-ксилсодержащие - вода, гликоли, оксиэтилир. дифенилол-пропан, моноаллиловый эфир глицерина, касторовое масло; 2) диамины -4,4"-метилен-бис-(о-хлоранилин), фенилен-диамины и др. Природой этих агентов определяются мол. масса линейных П., густота вулканизац. сетки и строение поперечных хим. связей, возможность образования доменных структур (см. ниже) и, как следствие, комплекс св-в П. и их назначение (пенопласты, волокна, эластомеры и т.д.).

4. Катализаторы р-ций: 1) уретанообразования-третичные амины, хелатные соед. Fe, Си, Be, V, нафтенаты Рb и Sn, октаноат (октоат) и лауринат Sn; 2) циклотримеризации -неорг. основания; комплексы третичных аминов с эпокси-дами.

5. Прочие: в-ва, используемые для повышения стабильности сложноэфирных П. к щелочному гидролизу (карбо-диимиды), эмульгаторы, стабилизаторы изоцианатных групп при хранении полиуретановых форполимеров-гало-генангидриды карбоновых к-т.

В пром-сти синтез П. осуществляют в одну или две стадии, чаще всего в массе, реже-в р-ре.

Первый этап процесса-сушка гидроксилсодержащего компонента в вакууме (80-110 °С, остаточное давление 0,7-1,3 кПа) в аппаратах, снабженных рубашкой и быстроходной мешалкой, а также в роторно-пленочных аппаратах, спец. пленочных сушилках, имеющих сопла, через к-рые подается нагретый до 150°С азот.

При одностадийном методе кроме гидроксилсодержащих соед. и диизоцианатов в аппарат одновременно вводят агенты удлинения и структурирования; процесс ведут при 20-100 °С до исчерпания изоцианатных групп, кол-во к-рых в начале р-ции практически находится в эквимолярном соотношении с суммой гидроксильных и др. функц. групп компонентов, содержащих активный атом водорода (вода, спирты, гликоли, карбоксилсодержащие соед.). При этом протекает ряд последовательно-параллельных р-ций. Поэтому этим методом получают в осн. сильно сшитые пено-пласты, лакокрасочные покрытия, а также относительно низкомолекулярные, преим. линейные, волокнообразующие П. и пластмассы.

Для более четкого разделения процессов удлинения цепи и сшивания используют двустадийный метод, при к-ром на первой стадии синтезируют т. наз. изоцианатный фор-пол и мер, содержащий концевые изоцианатные группы (мол. м. 1000-5000; молярный избыток изоцианатных групп к гидроксильным - не менее 2). Процесс осуществляют, как правило, периодич. способом в аппаратах с мешалкой при 80-110 °С в присут. катализатора в атмосфере инертного газа. Контроль р-ции ведут по убыли изоцианатных групп, кол-во к-рых по сравнению с первоначальным должно уменьшиться не более чем в 2 раза.

На второй стадии проводят взаимод. форполимера с агентами удлинения (при синтезе линейных П.) или удлинения и структурирования при 20-100°С. При этом используют чаще всего эквимолярное соотношение между изоци-анатными группами форполимера и суммой активных атомов Н агентов удлинения и структурирования. На этой завершающей стадии синтеза при получении линейных П. расплав полимера выдавливают из аппарата и после охлаждения блоки гранулируют (получают термоэластопласты, пластики) или подвергают вальцеванию (каучуки). При проведении процесса в р-рителе р-ры полимеров сливают в емкости для послед. переработки (клеи, р-ры для формования волокон).

По др. способу при синтезе сетчатых П. в массе как по одно-, так и двустадийной технол. схеме получают жидкую реакц. массу путем интенсивного смешения компонентов в литьевых машинах разл. типа, снабженных дозирующими устройствами. Смесительные камеры машин представляют высокоэффективные перемешивающие устройства с числом оборотов до 30 тыс. в 1 мин; время пребывания реакц. массы в камере не превышает 5-10 с. Полученную массу сливают в формы требуемой конфигурации, где и завершается "реакц. формование", т. е. получение изделий (пенопластов, эластомеров).

Свойства. Линейные П.-твердые аморфные или кристаллизующиеся полимеры; мол. м. (10-50)·10 3 ; практически полностью раств. в высокополярных (ДМФА, ДМСО, про-пиленкарбонат) или протоноакцепторных (диоксан, ТГФ) р-рителях. Сетчатые П. ограниченно набухают в этих р-рителях; их св-ва определяются не только строением исходных компонентов, но и густотой пространств. сетки (степенью сшивания). Уретанфункцион. олигомеры-вязкие жидкости (вязкость от сотен до неск. тысяч пуаз); мол. м. 1000-5000; раств. во многих орг. р-рителях.

Св-ва П. обусловлены наличием взаимодействий специ-фич. характера (водородные связи, связи ионного типа) и неспецифического (диполь-дипольных, ван-дер-ваальсовых взаимод., а также кристаллизацией), суммарный вклад к-рых в формирование комплекса св-в П. является определяющим.

При образовании водородных связей донорами протонов служат атомы Н уретановых групп, в случае полиуретан-мочевин и полиамидоуретанов - атомы Н соответствующих функц. групп; акцепторами протонов являются карбонилы перечисл. групп, а также сложноэфирных групп в случае полиэфируретанов и простые эфирные связи в случае П., полученных на основе полиоксиалкиленгликолей. Уретановые, мочевинные и др. группы, имеющиеся в структуре П., участвуют также в диполь-дипольных взаимодействиях. В результате проявления сил специфич. межмол. взаимодействия в структуре П. возникают ассоциаты, т. наз. доменные образования, термодинамически не совместимые с массой основных цепей полимеров, но связанные с ними химически. Вследствие такой несовместимости происходит микрофазное расслоение (микросегрегация) на надмолекулярном уровне. При этом фаза, образованная ассоциатами, является своеобразным усиливающим "активным наполнителем" в П. В частности, этим объясняется возможность получения на основе П. материалов, обладающих высокими конструкц. св-вами (прочностью, твердостью, сопротивлением раздиру), без введения активных наполнителей.

В т. наз. сегментированных П. (блокполи-уретанах), синтезированных из изоцианатных форполиме-ров, при получении к-рых соотношение изоцианатных и гидроксильных групп составляло больше 2, и эквимоляр-ного кол-ва низкомол. диола (агент удлинения цепи), доменные структуры образуются вследствие высокой концентрации блоков соседних уретановых групп В ионо-мерах, т. наз. катионных П., доменные структуры, образуются в виде четвертичных аммониевых соединений.

Все межмол. взаимод. играют также роль "физ." поперечных связей. Усиливающие эффекты, обусловленные наличием доменных структур, проявляются только в совокупности: 1) с взаимодействиями неспецифич. характера, напр. с появлением кристалличности (использование кристаллизующихся алифатич. диизоцианатов и диолов для получения волокнообразующих П. и нек-рых термоэластопластов); 2) с сильным когезионным взаимод. ароматич. диолов (использование ароматич. полиэфиров и диолов для получения термоэластопластов); 3) с наличием хим. поперечных связей (литьевые П.-пенопласты, эластомеры, клеи и лакокрасочные покрытия).

Сильные межмол. взаимод. определяют и специфику пространств. сетки П.: будучи образована только "физ." поперечными связями (термоэластопласты, пластмассы, волокна), она обеспечивает св-ва квазисетчатых материалов (высокая прочность при комнатной т-ре, твердость и др.). Для получения высоких прочностных показателей у не-наполненных П., способных функционировать при повыш. т-рах, необходима смешанная пространств. сетка из "физ." и хим. поперечных связей, причем кол-во последних должно быть невелико. В противном случае хим. связи будут препятствовать своб. конформации цепей П. и соответственно реализации сил межмол. взаимодействий.

Наличие межмол. взаимодействий определяет и особенности релаксац. поведения П. С одной стороны, это существ. снижение мех. показателей при многократных воздействиях нагрузок из-за частичного разрушения "физ." связей, в т. ч. под воздействием развивающихся т-р, с другой - равновесный характер лабильных "физ." связей, способность их вследствие этого к перераспределению и восстановлению после снятия нагрузки и периода "отдыха"; этим объясняется регенерация св-в П., что особенно проявляется в случае пенопластов.

Достоинства П., определившие быстрое развитие их произ-ва (особенно во вспененной форме): 1) полимеры этого класса обладают уникальным комплексом св-в: высокой прочностью и твердостью в ненаполненном состоянии в сочетании с эластичностью, масло- и бензостойкостью, хорошей адгезией к широкому кругу материалов, радиац. стойкостью и, наконец, исключительно высоким сопротивлением истиранию, по величине к-рого П. превосходят большинство известных полимеров.

2) Варьирование природы исходных компонентов и простое изменение их соотношения позволяет относительно легко получать широкий ассортимент материалов - пластиков, эластомеров, волокон, пенопластов. Теми же путями можно варьировать и способы переработки П.: т. наз. реакц. формование, или реакц.-инжекц. формование (производят литьевые, пенопласты и эластомеры); литье под давлением (термоэластопласты, волокна); на стандартном оборудовании резинотехн. пром-сти (т. наз. вальцуемые уретановые эластомеры).

3) Технически ценные вспененные П. получают, как правило, не путем введения порофоров или применения газов, а в результате взаимод. изоцианатных компонентов с водой, карбоксилсодержащими полиэфирами или др.; при этом создаются благоприятные условия для формирования макроструктуры пеноматериала одновременно с хим. р-циями его образования.

Недостатки П.: невысокая стойкость при повыш. т-рах и к действию щелочей, накопление остаточных деформаций под действием длит. нагрузок, резкая зависимость физ.-мех. св-в от перепадов т-ры.

Применение. Линейные П. используют как пластич. массы, полиуретановые волокна, термоэластопласты, для получения искусств. кож, клеев (см. Клеи синтетические), вальцуемых П. Сетчатые П. используют как пенополиуретаны, уретановые эластомеры, лаковые покрытия (см. Полиуретановые лаки), герметики. Полиуретановые иономеры применяют для получения латексов, используемых в лакокрасочной пром-сти, для приготовления клеев, произ-ва электропроводящих материалов, в медицине.

Уретановые ВПС-основа усиленных каучуков, ударопрочных пластиков, спец. клеев, лаков, вибро- и шумо-защитных материалов. Уретанофункцион. олигомеры-заливочные отверждаемые компаунды; их применяют также для приготовления клеев, получения лакокрасочных покрытий. "Безизоцианатные" П. применяют при изготовлении полов пром. зданий и сооружений.

Крупнейшие потребители П.: автомобилестроение (до 25% всего объема произ-ва), изготовление мебели (до 20%), стр-во (16%), в произ-ве холодильников (9%), остальное-с. х-во, электроника, обувная пром-сть, произ-во товаров культурно-бытового назначения.

Мировое произ-во П. ок. 3,5 млн. т (1986); из них на долю пенопластов приходится до 87%.

Крупнейшие производители П.: США, Канада (до 37% общего объема выпуска), Зап. Европа (до 42%), Япония (12%), остальные страны (10%).

П. впервые получены в Германии в 1937 О. Байером с сотрудниками.

Лит.: Липатов Ю. С., Керча Ю.Ю., Сергеев Л. М., Структура и свойства полиуретанов, К., 1970; Райт П., Камминг Л., Полиуретановые эластомеры, пер. с англ., Л., 1973; Энциклопедия полимеров, т. 3, М., 1977, с. 63-70; Композиционные материалы на основе полиуретанов, пер. с англ., под ред. Дж. М. Бьюиста, М., 1982; Любартович О. А., Морозов Ю. Л., Третьяков О. Б., Реакционное формирование полиуретанов, М., 1990; Advances in urethane science and technology, ed. by K.. C. Frisch and S. L. Reegen, v. 1 -4, Stamford, 1971-76; Frisch K.C., "Popular Plastics", 1986, v. 31, № 3, p. 17-21; UTECH" 86: Polyurethane industry"s international conference. The Hague, March 18-20, 1986, v. 4-7, L., 1986. "

Объявления о покупке и продаже оборудования можно посмотреть на

Обсудить достоинства марок полимеров и их свойства можно на

Зарегистрировать свою компанию в Каталоге предприятий

Полиуретан (англ. polyurethane, polyuretan) — полимерное искусственно синтезированное вещество, имеющее особые свойства, позволяющие материалу широко использоваться. Имеет несколько подвидов.

Самый распространенный из всех видов полиуретана — вспененный, который очень востребован в строительной промышленности. Этот материал очень легкий, водостойкий, его просто применять. Сейчас особенно востребован вспененный полиуретан, о чем говорит рост его производства с каждым днем. Он входит в состав теплоизоляционных материалов, из него делают декоративные элементы мебели и интерьера и т. д.

Второй по популярности вид — жидкий полиуретан, из которого делают полиуретановую кровлю. Собственно, в строительстве это вещество в любых его формах применяется чаще всего, что обусловлено его свойствами. Следует отметить, что для скрепления полиуретановых изделий универсальный клей не подойдет, а для каждого состава подбирают свой уникальный вариант.

Существует также листовой и литьевой полиуретан. Первый применяется в автомобилестроительной промышленности, а второй — в медицине. Из него также делают уплотнительные кольца, сайлент-блоки и другие элементы для автомобиля.

Полиуретан (ПУ), пенополиуретан (или ППУ)

1. Полиуретан: история, классификация, особенности материала

На сегодняшний день существует очень много видов полиуретановых полимерных соединений. Они сделаны из разных веществ, содержат разнообразные функциональные группы, в корне отличаются по своим физико-химическим свойствам. Общее у них только одно — наличие уретановой группы -NHCOO- в постоянно повторяющихся звеньях полимерной цепи.

Полиуретан имеет давнюю историю. В 30-е годы ХХ столетия ученый Карозерс из США занимается синтезом полиамидов. Узнав об этих исследованиях, немецкая компания «Farbenindustrie» начинает синтезировать полимерные вещества из полиамидов. В 1937 году Байер, немецкий ученый, открывает полиуретановые эластомеры, синтезируя их из диизоцианатов и всевозможных гидроксилов. Преобразовав их, он вывел пенополиуретан.

После этого открытия начались разработки по внедрению данного материала в производство и замене менее выгодных продуктов (каучук, пробка, сталь) на него. С тех пор полиуретановая химия активно развивается. В частности, в СССР работы по разработке новых материалов на его основе активно велись с 60-х годов во многих научно-исследовательских институтах.

Полиуретаны не имеют одинаковых свойств, и это активно используется в производстве. Так, одни вещества могут быть эластичными, другие — жесткими и полужесткими. Переработку полиуретановпроизводят с помощью следующих методов:
— экструзия;
— литье;
— прессование;
— заливка на стандартном оборудовании.

С помощью этих подходов можно получить наполненные, вспененные, ламинированные, армированные листовые изделия. А это всевозможные волокна, панели, пленки, профили, блоки и многое другое. Полиуретан может служить основой как для окрашенных изделий, так и для прозрачных.

2. Свойства полиуретанов

Полиуретановые полимеры отличаются от других материалов особенной прочностью и устойчивостью к износу и раздиранию. Кроме того, данные вещества неплохо переносят нахождение в органических растворителях и маслах, выдерживают атаку озона, не разлагаются под воздействием радиации. Это все в совокупности говорит о том, что полиуретан является одним из лучших материалов по всем эксплуатационным характеристикам.

Полиуретан отличается высокой прочностью, которая порой лучше, чем у каучука, резины и даже металла. И если применять это вещество в промышленности, можно получить очень прочный материал (если его нужно использовать в местах с постоянным металлическим напряжением), износостойкий. Так, у литьевых полиуретанов абразивная стойкость в несколько раз выше, чем у пластика, резины, металла.

Более того, литьевой полиуретан отлично себя проявляет при нагреве. Так, он не теряет основных своих характеристик, таких как эластичность, деформация при разрыве и прочие свойства, обретая только новые качества. Даже имея высокую твердость, полиуретан остается эластичным — его предел деформации разрыва превышает 350%, что обеспечивает прочность даже при 50 МПа.

Полиуретан способен при постоянном динамическом напряжении выдерживать эксплуатацию при температуре в 120 градусов. А использование при пониженных температурах еще более реально. Эластомеры этого материала не теряют своих свойств даже при -70 С.

У всех полиуретанов сильно проявляются диэлектрические свойства. Они не растворимы в растворителях и маслах, не набухают в них, не подвержены разрушению под воздействием озона, устойчивы к воздействию плесени и бактерий.

За счет возможности использования литьевого типа изготовления полиуретановых изделий можно получить предметы любых форм и типов, что нельзя сказать даже о резиновых деталях. Кроме того, полиуретановая технология производства значительно дешевле, чем резиновая, а это значит, что изделия из него также будут доступнее, чем из резины и каучука.

Из минусов материала наиболее существенный — проблемы с переработкой полиуретановых отходов.

3. Использование полиуретанов

Самыми востребованными в промышленности типами полиуретанов являются литьевые эластомеры. Данная технология используется для получения крупных и средних деталей, например, огромных шин для транспорта, используемого на заводе. Применение для шин полиуретана позволяет повысить их надежность в 6-8 раз по сравнению с каучуком. Из ПУ делают также крупные детали для следующих устройств:
— транспорт для абразивного шлама;
— гидроциклоны;
— трубопроводы;
— флотационные установки.

Среднего типа детали находят свое применение в следующем:
— ремни ткацких машин;
— уплотнители в машинах разного рода и размера;
— конвейерные ленты;
— детали автомобилей;
— валики для бумажной и текстильной техники;
— уплотнители гидравлических машин и т. д.

Что же касается термоустойчивых эластопластов, то они используются в производстве автомобилей. Так, эти материалы применяются в подшипниках скольжения механизма руля, в подвеске автомобиля, вкладышах рулевых тяг, топливных клапанах, различных уплотнениях. Из ПУ производят детали, которые должны стойко переносить постоянное воздействие масла.

Полиуретан применяется и в обувной промышленности, где его используют в производстве прочной подошвы. Также из этого материала часто делаю искусственную кожу, так как он надежный и прочный.

Полиуретан применяют и при производстве древесностружечных плит, пенопластов, полимербетонов, различных покрытий, клеевых составов, изделий медицинского назначения и прочих продуктов и инструментов. За счет своих преимуществ перед резиной и другими подобными материалами полиуретан широко применяется во всевозможных производствах, так как это выгодно. Но наиболее выгодным типом ПУ является пенополиуретан, который в денежном выражении приносит свыше 90% дохода от общих поступлений за производство всех полиуретанов.

4. Пенополиуретан

ППУ — это один из видов газонаполненных пластмасс (в народе — пенопластов), широко применяемых в утеплении помещений. Все утеплители очень легкие, но габаритные. Связано это с их составом, так как в них до 90% объема занимает воздух. Чтобы не перевозить воздух с места на место, наилучшее решение — изготовить утеплитель прямо на месте. Именно это позволяет сделать пенополиуретан.

Утеплитель получается путем соединения двух веществ прямо на месте строительства. Это очень выгодно и удобно, так как технология очень простая. Итак, смешивают полиол с полиизоционатом до образования микрокапсюль с воздухом. Материал выходит очень экономичный. Так, тонна исходных продуктов позволит получить 20 кубических метров утеплителя плотностью 50 кг/м3. Таким образом, из 4-х 200-литровых бочек сырья можно получить невероятное количество утеплителя по простой технологии. Это выгодно с экономической точки и удобно в применении.

Пенополиуретан — нетоксичный материал. В любой стране он без проблем проходит проверку на безопасность. Даже в России, где требования ко всему серьезнее, нежели в развитых европейских странах, санитарная служба делает заключение о безопасности данного теплоизоляционного материала.

Если одним из исходных компонентов для получения пенополиуретана был антипирен, продукт обладает неплохой огнеустойчивостью. Так, он будет гореть только при поддержании огня снаружи, а как только факел или спичку уберут — угаснет, даже не дымясь и не тлея. Выбирая тип пенополиуретана, учитывают, где материал будет использоваться. Так, для тепловой изоляции труб, проходящих внутри земли, огнеупорные материалы не нужны. А вот если ППУ хотят закачать в прослойку между стен в жилом доме, лучше подыскать огнеупорный его тип. Не стоит беспокоиться, что пенополиуретан может сам загореться. Это возможно только при очень высоких температурах. Как правило, если стены дома достигают этих пороговых значений по температуре, гореть кроме ППУ уже нечему.

При смешении полиола и изоционата с воздухом получается смесь мелкой степени дисперсности, называемая аэрозолем. Ее наносят на поверхность — данный тип обработки именуют «напыление пенополиуретана»).

При смешении компонентов без участия воздуха получают идеально ровную и плотную монолитную струю, которую можно залить в ограниченное пространство. Данная технология называется заливкой пенополиуретаном и активно применяется в различных областях производства. Так, пенополиуретаниспользуют при производстве автомобилей, самолетов, мебели, в пищевой индустрии, в производстве упаковок, при изготовлении трубопроводных коммуникаций. Не менее важен он и в легкой промышленности — производстве спортивного инвентаря и обуви. Применяют пенополиуретан и в других более узких и специфических производствах.

Метод напыления пенополиуретана — один из лучших подходов для теплоизоляции помещения. Пенополиуретан хорошо заполняет различные пространства, надежно впитывается, поэтому архитекторы и строители могут активно использовать этот материал для воплощения в реальность проектов по утеплению зданий с различной сложной геометрической внешностью, например, с арками, колоннами, выступами и прочими элементами.

С помощью пенополиуретана можно быстро отремонтировать старую крышу, требующую реконструкции. При этом не важно, под каким углом постелена кровля. Так, если применить пенополиуретановоенапыление вместо классических методов ремонта и утепления, можно сэкономить до 80% времени и 50% средств.

Технология утепления и ремонта крыши следующая: кровлю сначала покрывают 4-5 сантиметровым слоем данного утеплителя (рекомендуемая его плотность составляет 60-80 кг/м3), после чего наносят защитный и гидроизоляционный пенополиуретан повышенной плотности толщиной 0,3-1 см (плотность материла при этом составляет 120-600 кг/м3).

С помощью пенополиуретана можно качественно произвести изоляцию труб для сохранения тепла внутри теплотрасс. Используя этот материал, можно получить монолитное покрытие, которое будет не только теплоизолирующим, но избавит и от просачивания воды и пара. Покрыв трубу пенополиуретаном, ее нужно только покрасить — на этом изоляция тепловых магистралей заканчивается.

Свойства ППУ позволяют использовать его для утепления чердака, крыши изнутри, потолка, стен, фасадов, других строительных элементов и конструкций. А за счет того, что на пенополиуретан влага не действует разрушающим образом, его можно выбирать для утепления пола, фундамент, погреба, подвальных конструкций.

Пенополиуретан — довольно долговечный материал, срок эксплуатации которого может превышать 30 лет. К примеру, во многих городах Европы при демонтаже старых крыш и стен, построенных в 70-х годах, обнаруживают пенополиуретан, который ничуть не изменился за это время. И причин для подобного изменения действительно нет. По сути, данный полимер — это замкнутые пластиковые капсюли, внутри которых находится воздух или углекислый газ. Этому веществу не с чем взаимодействовать, что обеспечивает такую долговечность.

Пенополиуретан — лучший из всех материалов по теплопроводности. Так, материал, произведенный на отечественных заводах, имеет коэффициент теплопроводности менее 0,028 Вт/м*град, и эта цифра постепенно снижается. К примеру, похожими свойствами обладает экструдированный пенополистирол, коэффициент у которого составляет 0,03 Вт/м*град, но снижаться больше не будет, так как достиг своего минимального предела.

Еще одна причина, почему пенополиуретан является королем по теплопроводности среди утеплителей — отсутствие у него зависимости этих свойств от влажности среды. А это значит, что даже постоянное нахождение под дождем и снегом не испортит материал и не сделает его менее способным сохранять тепло.

Как же высчитать, насколько выгоднее использовать пенополиуретан в сравнении с другими утеплителями? Для этого делят теплозащитную эффективность одного материала на такую же — для другого. К примеру, получив соотношение между пенополистиролом и пенополиуретаном(0,04/0,028=1,43), можно утверждать, что вместо 10-сантиметрового слоя пенополиуретана придется использовать 14,3 см пенополистирола, чтобы добиться такого же энергосбережения.

Итак, применять пенополиуретан крайне выгодно, и вот почему:
— За счет технологии напыления ППУ можно нанести на любой тип поверхности, а также залить в любое отверстие, где будут заполнены все щели и поры внутри.
— За счет усовершенствованной технологии использования работу можно завершить в краткие сроки.
— Технология напыления позволяет получить целостное покрытие, в котором не будет швов, из-за которых покрытие ускоренно разрушается. В этом же случае получается однородный по объему материал, имеющий качественный внешний вид.
— Если избежать случайных повреждений ППУ, он прослужит более четверти века.
— Качественный ППУ эксплуатируется при температурах от -250 С до +180 С, что является достаточно широким диапазоном.
— Коэффициент теплопроводности материала составляет 0,023-0,032 Вт/мК.
— Пенополиуретан не позволяет развиваться в своей среде плесени, микроорганизмам и прочим факторам, способствующим разложению.
— ППУ — трудносгораемый материал, который горит только при постоянной поддержке огня.
— Коэффициент водопоглощения материала за сутки при влажности 98% составляет 0,05% (2г/м2).

Итак, пенополиуретан — дешевый, качественный материал с исключительными характеристиками, который используется для утепления помещений и прочих целей.

В России пенополиуретан становится все более востребованным, поэтому разные его виды все в большем количестве производятся. Несмотря на это материал не столь популярен, как в Европе и США. Там он является привычным средством, применяемым более 50 лет.

Пенополиуретан применяется в следующих отраслях:
1. Теплоизоляция холодильников бытового и промышленного типа, морозильных хранилищ, складов.
2. Создание транспорта с холодильными свойствами — авторефрижераторов, вагонов.
3. Быстрое строительство зданий — так называемые сэндвич-панели, включающие жесткую конструкцию и утеплитель.
4. Ремонт жилых помещений, в частности, домов, квартир, коттеджей (утепление крыши, стен, дверей, оконных проемов и прочее).
5. Строительство гражданских и промышленных объектов (гидроизоляция крыши методом напыления, теплоизоляция здания).
6. Утепление мощных нефтяных и газовых трубопроводов, их изоляция методом заливки специального кожуха внутри.
7. Утепление тепловых сетей в населенных пунктах, а также системы трубопровода горячей воды.
8. Защита радио- и электротехники.
9. Создание деталей в производстве автомобилей, в частности, элементов салона машины.
10. Изготовление мебели из поролона (один из видов пенополиуретана), жестких видов пенополиуретана, производство лаков, клея, различных элементов и покрытий.
11. Изготовление обуви из искусственной кожи, а также подошвы и прочих материалов легкой индустрии.
12. Шумо- и теплоизоляция вагонов и самолетов, использование пенополиуретана для повышения огнестойкости транспорта.

Схожим по свойствам материалом с пенополиуретаном является полиурия (или полимочевина). Но есть отличия. Ее нельзя получить при низком давлении. Связано это с высокой вязкостью и плотностью материала, запросам к температуре синтеза. Поэтому полимочевину можно получить только при использовании высокого давления. Наличие подобных элементов весьма проблематично. Такие установки используются только для узких задач. Поэтому полиурия не так распространена и востребована, как полиуретан.

В нашей стране достаточно много компаний, занимающихся поставкой сырья для производства пенополиуретана. Так, изготовлением жидких составляющих для синтеза этого вещества занимаются крупные международные игроки (Shell, Basf), а также более мелкие российские компании. Большинство из них находится в г. Владимир, где некогда был НПО «Полимерсинтез».